Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices

合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台

基本信息

  • 批准号:
    2225896
  • 负责人:
  • 金额:
    $ 35.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

The total energy consumption by opto-electronic devices is predicted to surpass the global energy production by the year 2040 unless radical changes are made in their design and manufacturing and large improvements in their performance. This grant supports research that helps to alleviate this challenge by pioneering an innovative manufacturing approach that enables novel and highly efficient three-dimensional chip designs that do not rely on unsustainable miniaturization of the traditional chip architectures. Such three-dimensional architectures are only accessible via new bottom-up manufacturing processes that build and assemble devices in an additive manner via atomically precise and self-aligned positioning of the device components. Current top-down manufacturing does not leverage energy-efficient chemical processes that can significantly reduce manufacturing energy requirements, nor does it benefit from spontaneous molecular and atomic self-organization phenomena that can reduce the size of the chip components. The goal of this research is to develop a continuous, energy-efficient manufacturing platform for bottom-up deposition and high-resolution patterning of opto-electronic device components. The project impacts a broad range of research fields, including electronics, sensing, catalysis, and optical technology as well as training of the future manufacturing workforce. The results of this research positively impact the U.S. economy and society, delivering significant value and growth potential.The key technologies for enabling atomically precise, bottom-up manufacturing of ultra-efficient electronic, photonic and quantum devices depend on area-selective methods for atomic layer deposition and atomic layer etching. This research addresses the main challenges that preclude widespread implementation of these techniques by integrating universal resist materials, in-situ resist regeneration, and universal photo-initiated resist patterning into a single and continuous manufacturing process that is compatible with a variety of substrates and chemistries without significant optimization. Current area-selective atomic layer deposition relies on resist materials and patterning methods that are highly substrate dependent. The hypothesis is that interactions between atomic layer deposition reagents and resists can essentially be independent from the substrate structure and chemistry. This paradigm fundamentally changes the technological approach by generating the resists using universal small-molecule meta-stable species, such as carbenes and nitrenes, instead of substrate-specific resists that are currently being used. The high reactivity of these species overcomes the diffusion problems with resist deposition and regeneration, is applicable to a variety of materials, is useful within a wide range of conditions, and is easily reproduced, as the chemical processes are quantifiable and scalable. Moreover, such small molecule resists are amenable to universal photo-initiated patterning steps that can be performed in-situ.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
预计到 2040 年,光电设备的总能耗将超过全球能源生产量,除非其设计和制造发生根本性变化,并大幅提高其性能。这笔赠款支持研究,通过开创一种创新的制造方法来帮助缓解这一挑战,这种方法可以实现新颖且高效的三维芯片设计,而不依赖于传统芯片架构的不可持续的小型化。这种三维架构只能通过新的自下而上的制造工艺来实现,该工艺通过设备组件的原子级精确和自对准定位以增材方式构建和组装设备。当前的自上而下制造没有利用可以显着降低制造能源需求的节能化学工艺,也没有受益于可以减小芯片组件尺寸的自发分子和原子自组织现象。这项研究的目标是开发一个连续、节能的制造平台,用于光电器件组件的自下而上沉积和高分辨率图案化。该项目影响广泛的研究领域,包括电子、传感、催化和光学技术以及未来制造业劳动力的培训。这项研究的结果对美国经济和社会产生了积极影响,带来了巨大的价值和增长潜力。实现原子级精确、自下而上制造超高效电子、光子和量子器件的关键技术取决于原子的区域选择方法。层沉积和原子层蚀刻。这项研究通过将通用抗蚀剂材料、原位抗蚀剂再生和通用光引发抗蚀剂图案化集成到单一且连续的制造工艺中,解决了阻碍这些技术广泛实施的主要挑战,该工艺与各种基材和化学物质兼容,且无需显着优化。当前的区域选择性原子层沉积依赖于高度依赖于衬底的抗蚀剂材料和图案化方法。假设原子层沉积试剂和抗蚀剂之间的相互作用基本上独立于基底结构和化学性质。这种范例从根本上改变了技术方法,通过使用通用小分子亚稳定物质(例如卡宾和氮烯)生成抗蚀剂,而不是目前使用的特定于基材的抗蚀剂。这些物质的高反应性克服了抗蚀剂沉积和再生的扩散问题,适用于多种材料,可在多种条件下使用,并且易于复制,因为化学过程是可量化和可扩展的。此外,这种小分子抗蚀剂适用于可在原位进行的通用光引发图案化步骤。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Vapor-Phase Halogenation of Hydrogen-Terminated Silicon(100) Using N -Halogen-succinimides
使用 N-卤素-琥珀酰亚胺气相卤化氢封端硅 (100)
  • DOI:
    10.1021/acsami.3c13269
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Raffaelle, Patrick R.;Wang, George T.;Shestopalov, Alexander A.
  • 通讯作者:
    Shestopalov, Alexander A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Shestopalov其他文献

Visualization of the bone marrow biopsy needle track
骨髓活检针迹的可视化
  • DOI:
    10.1002/ajh.24985
  • 发表时间:
    2018-03-01
  • 期刊:
  • 影响因子:
    12.8
  • 作者:
    Shirin Attarian;L. Reed;S. Singh;Alexander Shestopalov;Aditi P. Singh;Anjali Budhathoki;Simon Abi;U. Shah;Salem Kim;K. Bachiashvili;T. Elrafei;Weijuan Li;Conway Yee;Ellen W. Friedman
  • 通讯作者:
    Ellen W. Friedman
Influenza A/H1N1pdm virus in Russian Asia in 2009-2010.
2009-2010 年俄罗斯亚洲的甲型 H1N1pdm 流感病毒。
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Ilyicheva;I. Susloparov;Durymanov Ag;A. Romanovskaya;K. Sharshov;O. Kurskaya;O. Kurskaya;Ignashkina Mb;Alexander Shestopalov
  • 通讯作者:
    Alexander Shestopalov
Pinnipeds and avian influenza: a global timeline and review of research on the impact of highly pathogenic avian influenza on pinniped populations with particular reference to the endangered Caspian seal (Pusa caspica)
鳍足类动物和禽流感:高致病性禽流感对鳍足类动物种群影响的全球时间表和研究回顾,特别是濒临灭绝的里海海豹(Pusa caspica)
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Alimurad Gadzhiev;Guy Petherbridge;K. Sharshov;I. Sobolev;A. Alekseev;Marina Gulyaeva;Kirill Litvinov;Ivan Boltunov;Abdulgamid Teymurov;Alexander Zhigalin;Madina Daudova;Alexander Shestopalov
  • 通讯作者:
    Alexander Shestopalov
Preventive Efficacy of Oxidized Dextran and Pathomorphological Processes in Mouse Lungs in Avian Influenza A/H5N1
氧化右旋糖酐对 A/H5N1 禽流感的预防作用及小鼠肺的病理形态学过程
  • DOI:
    10.1007/s10517-011-1229-8
  • 发表时间:
    2011-04-28
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    O. V. Potapova;V. Shkurupiy;T. Sharkova;A. Troitskiy;N. G. Lusgina;Alexander Shestopalov
  • 通讯作者:
    Alexander Shestopalov
Role of Matrix Metalloproteinases and Their Inhibitor in the Development of Early Pulmonary Fibrosis in Mice Infected with Influenza A/H5N1 A/GOOSE/Krasnoozerskoye/627/05 Virus
基质金属蛋白酶及其抑制剂在感染 A/H5N1 A/GOOSE/Krasnoozerskoye/627/05 病毒的小鼠早期肺纤维化发展中的作用
  • DOI:
    10.1007/s10517-013-2265-3
  • 发表时间:
    2013-11-01
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    A. G. Anikina;O. V. Potapova;V. A. Shkurupii;Alexander Shestopalov
  • 通讯作者:
    Alexander Shestopalov

Alexander Shestopalov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Shestopalov', 18)}}的其他基金

MRI: Acquisition of an analytical imaging X-Ray photoelectron spectrometer
MRI:购买分析成像 X 射线光电子能谱仪
  • 批准号:
    1228889
  • 财政年份:
    2012
  • 资助金额:
    $ 35.57万
  • 项目类别:
    Standard Grant

相似国自然基金

基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
  • 批准号:
    62371039
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
自动驾驶场景下基于强化学习的可扩展多智能体协同策略研究
  • 批准号:
    62306062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于无监督持续学习的单细胞多组学数据可扩展整合方法研究
  • 批准号:
    62303488
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
区块链系统中面向业务优化的混合状态验证机制的可扩展性研究
  • 批准号:
    62302202
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于随机化的高效可扩展深度学习算法研究
  • 批准号:
    62376131
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 35.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330196
  • 财政年份:
    2024
  • 资助金额:
    $ 35.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 35.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330195
  • 财政年份:
    2024
  • 资助金额:
    $ 35.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 35.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了