Deformation Mechanisms of Gradient Steels with High Strength and Ductility

高强高塑梯度钢的变形机制

基本信息

  • 批准号:
    2217727
  • 负责人:
  • 金额:
    $ 58.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Gradient metals are designed such that the physical properties change steadily with position. This has many benefits but none more than the ability to achieve enhanced strength and ductility at the same time. There are competing views regarding the mechanisms responsible for this phenomenon, but many of these views have not been validated and reconciled. This award will use a combination of novel in situ mechanical testing and modeling at various length scales to distinguish the various deformation mechanisms in gradient steel microstructures. Structurally gradient steels with high strength and ductility have broad applications in nuclear, petrochemical and automobile industries. The fundamental knowledge derived from this study may be generally applicable for the design of other strong and ductile structural metallic materials. The award will also support an extensive education and outreach plan, including the opportunity for graduate students to work with collaborators at a national laboratory, recruitment of minority undergraduate students as interns, and mentoring of middle and high school students in science fairs.The objective of this grant is to investigate, at a fundamental level, the influence of microstructure gradient on mechanical behavior of steels by integrating severe plastic deformation, in situ micromechanical testing, and crystal plasticity simulations. The goal is to design heterogeneous materials with significantly improved mechanical strength and ductility. The hypothesis is that significant grain coarsening of the elongated grain morphology arises from dynamic recrystallization and/or stress-driven grain boundary migration, and the switching between the two mechanisms should be temperature dependent. A further hypothesis is that the suppression of localized shear softening under the combined influence of deformation mechanisms and gradient microstructure evolution leads to increased strength and ductility. To test these hypotheses, a dislocation plasticity based theoretical framework combining plastic deformation, dynamic recrystallization, and stress-driven grain boundary migration will be developed to study gradient microstructures. The modeling will complement the investigation of the fundamental deformation mechanisms by in situ tension microscopy studies at various temperatures and length scales.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
梯度金属的设计使得物理特性随着位置的变化而稳定变化。这有很多好处,但无非是能够同时提高强度和延展性。关于造成这种现象的机制存在相互竞争的观点,但其中许多观点尚未得到验证和协调。该奖项将结合使用新颖的原位机械测试和不同长度尺度的建模来区分梯度钢微观结构中的各种变形机制。具有高强度和高延展性的结构梯度钢在核工业、石化工业和汽车工业中有着广泛的应用。从这项研究中获得的基础知识可能普遍适用于其他坚固且延展的结构金属材料的设计。该奖项还将支持广泛的教育和推广计划,包括为研究生提供与国家实验室合作者合作的机会、招募少数族裔本科生作为实习生,以及在科学博览会上指导初高中生。该资助旨在通过整合剧烈塑性变形、原位微观机械测试和晶体塑性模拟,从根本上研究微观结构梯度对钢机械行为的影响。目标是设计机械强度和延展性显着提高的异质材料。假设是,拉长晶粒形态的显着晶粒粗化是由动态再结晶和/或应力驱动的晶界迁移引起的,并且两种机制之间的切换应该与温度相关。进一步的假设是,在变形机制和梯度微观结构演化的综合影响下抑制局部剪切软化会导致强度和延展性增加。为了检验这些假设,将开发一个基于位错塑性的理论框架,结合塑性变形、动态再结晶和应力驱动的晶界迁移来研究梯度微观结构。该模型将补充在不同温度和长度尺度下通过原位张力显微镜研究对基本变形机制的研究。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gradient nanostructured steel with superior tensile plasticity
具有优异拉伸塑性的梯度纳米结构钢
  • DOI:
    10.1126/sciadv.add9780
  • 发表时间:
    2023-06-02
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Z. Shang;Tianyi Sun;Jie Ding;N. A. Richter;N. Heckman;B. White;B. Boyce;K. Hattar;Haiyan Wang
  • 通讯作者:
    Haiyan Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xinghang Zhang其他文献

Design of 3D Oxide–Metal Hybrid Metamaterial for Tailorable Light–Matter Interactions in Visible and Near‐Infrared Region
用于可见光和近红外区域可定制光-物质相互作用的 3D 氧化物-金属混合超材料设计
  • DOI:
    10.1002/adom.202001154
  • 发表时间:
    2020-11-08
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Di Zhang;P. Lu;S. Misra;Ashley Wissel;Zihao He;Z. Qi;Xingyao Gao;Xing Sun;Juncheng Liu;Juanjuan Lu;Xinghang Zhang;Haiyan Wang
  • 通讯作者:
    Haiyan Wang
TiN-Au/HfO2 -Au Multilayer Thin Films with Tunable Hyperbolic Optical Response.
具有可调谐双曲光学响应的​​ TiN-Au/HfO2 -Au 多层薄膜。
  • DOI:
    10.1002/smtd.202400087
  • 发表时间:
    2024-03-14
  • 期刊:
  • 影响因子:
    12.4
  • 作者:
    Yizhi Zhang;Jianan Shen;Ben Tsai;Xuanyu Sheng;Zedong Hu;Xinghang Zhang;Haiyan Wang
  • 通讯作者:
    Haiyan Wang
Design of super-strong and thermally stable nanotwinned Al alloys via solute synergy.
通过溶质协同设计超强和热稳定的纳米孪晶铝合金。
  • DOI:
    10.1039/d0nr05707j
  • 发表时间:
    2020-09-15
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Yifan Zhang;R. Su;D. Xie;T. Niu;S. Xue;Qiang Li;Z. Shang;Jie Ding;N. Richter;Jian Wang;Haiyan Wang;Xinghang Zhang
  • 通讯作者:
    Xinghang Zhang
Extrinsic size dependent plastic deformability of ZnS micropillars
ZnS 微柱的外在尺寸依赖性塑性变形能力
Nanostructured cathode thin films with vertically-aligned nanopores for thin film SOFC and their characteristics
薄膜SOFC用垂直排列纳米孔纳米结构阴极薄膜及其特性
  • DOI:
    10.1016/j.apsusc.2007.07.053
  • 发表时间:
    2007-10-31
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Jongsik Yoon;Roy A. Araujo;N. Grunbaum;L. Baqué;A. Serquis;A. Caneiro;Xinghang Zhang;Haiyan Wang
  • 通讯作者:
    Haiyan Wang

Xinghang Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xinghang Zhang', 18)}}的其他基金

NSF-DFG: Hierarchical Design and Additive Manufacturing of Metallic Programmable Metamaterials
NSF-DFG:金属可编程超材料的分层设计和增材制造
  • 批准号:
    2228266
  • 财政年份:
    2023
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Standard Grant
NSF-DFG: Hierarchical Design and Additive Manufacturing of Metallic Programmable Metamaterials
NSF-DFG:金属可编程超材料的分层设计和增材制造
  • 批准号:
    2228266
  • 财政年份:
    2023
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Standard Grant
Collaborative Research: Interface enabled plasticity in high-strength Co-based intermetallics
合作研究:高强度钴基金属间化合物的界面塑性
  • 批准号:
    2210152
  • 财政年份:
    2022
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Standard Grant
Mechanics and Kinetics of Void Swelling in Irradiated Nanoporous Materials
辐照纳米多孔材料中空隙膨胀的力学和动力学
  • 批准号:
    1728419
  • 财政年份:
    2017
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Standard Grant
Collaborative Research: deformation mechanisms of fcc and hcp Cobalt with high-density stacking faults
合作研究:具有高密度堆垛层错的fcc和hcp钴的变形机制
  • 批准号:
    1642759
  • 财政年份:
    2016
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Standard Grant
Fundamental mechanisms of removal of stacking fault tetrahedra by mobile low energy boundaries
移动低能边界去除堆垛层错四面体的基本机制
  • 批准号:
    1643915
  • 财政年份:
    2016
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Continuing Grant
Collaborative Research: deformation mechanisms of fcc and hcp Cobalt with high-density stacking faults
合作研究:具有高密度堆垛层错的fcc和hcp钴的变形机制
  • 批准号:
    1508366
  • 财政年份:
    2015
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Standard Grant
Fundamental mechanisms of removal of stacking fault tetrahedra by mobile low energy boundaries
移动低能边界去除堆垛层错四面体的基本机制
  • 批准号:
    1304101
  • 财政年份:
    2013
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Continuing Grant
Friction and plasticity of amorphous metal coatings
非晶金属涂层的摩擦和塑性
  • 批准号:
    1161978
  • 财政年份:
    2012
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Standard Grant
Novel Magnetic Shape Memory Alloy Thin Films for Sensor and Actuator Applications
用于传感器和执行器应用的新型磁性形状记忆合金薄膜
  • 批准号:
    1129065
  • 财政年份:
    2011
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Standard Grant

相似国自然基金

适当冷暴露通过肠道菌群调控心脏免疫微环境改善心梗后心室重构和心力衰竭的作用与机制
  • 批准号:
    82330014
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
厨余垃圾典型抑制物胁迫下厌氧消化菌群胞间通讯的应激响应及作用机制
  • 批准号:
    52370133
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
SIRT1通过TXNIP/NLRP3通路促进巨噬细胞自噬在烟曲霉感染中的作用及机制研究
  • 批准号:
    82360624
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: Mechanisms driving positive and negative tree-fungal feedbacks across an abiotic-stress gradient
合作研究:在非生物胁迫梯度上驱动正负树真菌反馈的机制
  • 批准号:
    2310101
  • 财政年份:
    2023
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Continuing Grant
Molecular mechanisms that control column polarity in the brain by the gradient of Wnt l igands
通过 Wnt 配体梯度控制大脑柱极性的分子机制
  • 批准号:
    22KF0151
  • 财政年份:
    2023
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Elucidation of the mechanisms of jumbophage genome protection during infection
阐明感染过程中巨噬细胞基因组保护机制
  • 批准号:
    10606835
  • 财政年份:
    2023
  • 资助金额:
    $ 58.77万
  • 项目类别:
Collaborative Research: Mechanisms driving positive and negative tree-fungal feedbacks across an abiotic-stress gradient
合作研究:在非生物胁迫梯度上驱动正负树真菌反馈的机制
  • 批准号:
    2310100
  • 财政年份:
    2023
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Continuing Grant
Elucidating the mechanisms of gradient dependent and independent Wnt signaling in neuronal development
阐明神经元发育中梯度依赖和独立的 Wnt 信号传导机制
  • 批准号:
    RGPIN-2021-03154
  • 财政年份:
    2022
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了