Friction and plasticity of amorphous metal coatings

非晶金属涂层的摩擦和塑性

基本信息

项目摘要

The research objective of this grant is to elucidate the fundamental mechanisms of friction and plasticity in amorphous metal coatings. Certain MEMS/NEMS devices operated in dynamic mode have long been haunted by tribological issues. The scale-down of devices leads to large increases in surface force, including friction. In miniaturized gears manufactured by electrodeposited nanocrystalline metal, wear becomes an important issue. Environmental issues associated with electrodeposition of hard Cr coatings also call for commensurate replacement that can be fabricated by environment benign process. High-strength, amorphous metal coating is an appealing candidate for these purposes as it has high hardness, low surface roughness, and compatible elastic modulus and thermal expansion coefficient in comparison to metal substrates. However its friction behavior is poorly understood. Plasticity in amorphous coatings is an equally important subject, as it directly impacts tribological properties of these coatings. Several hypotheses will be tested, including amorphous metal coatings may have much lower friction coefficient than their crystalline counterparts, layer interface may induce unique friction and wear properties in amorphous multilayers. To examine these hypotheses, the PI will combine nanofabrication of amorphous films with advanced friction and nanomechanical testing techniques.If successful, the project may significantly improve the reliability and functionality of NEMS/MEMS components, magnetic data storage devices and wear resistant coatings. The concept and knowledge derived from this project will be of great scientific interest to metallic glass, coatings, nanomechanics, NEMS/MEMS, and the tribology community. Additionally this project will offer research training to graduate and undergraduate students at Texas A & M University (TAMU). Special effort will be made to recruit female and other minority students through the "Pathway to Ph.D program" funded by TAMU. The project will also enhance the materials science and nanoengineering curricula by incorporating the relevant results into classes when introducing advanced nanomaterials and benefit the relatively new Materials Science and Engineering graduate program. The PI will disseminate results to a much broader audience by involving high school teachers in the research project through NSF-RET program and through participation in international conferences. Collaborations with national laboratories will offer graduate students summer research experiences.
该资助的研究目的是阐明非晶金属涂层摩擦和塑性的基本机制。 某些在动态模式下运行的 MEMS/NEMS 设备长期以来一直受到摩擦学问题的困扰。 设备的缩小导致表面力(包括摩擦力)大幅增加。 在由电沉积纳米晶金属制造的小型齿轮中,磨损成为一个重要问题。 与电沉积硬铬涂层相关的环境问题也需要相应的替代品,这种替代品可以通过环境友好的工艺来制造。 高强度、非晶态金属涂层是用于这些目的的有吸引力的候选者,因为与金属基材相比,它具有高硬度、低表面粗糙度以及相容的弹性模量和热膨胀系数。 然而,人们对它的摩擦行为知之甚少。 无定形涂层中的塑性是一个同样重要的主题,因为它直接影响这些涂层的摩擦学性能。 将测试几种假设,包括非晶态金属涂层的摩擦系数可能比晶态金属涂层低得多,层界面可能会在非晶态多层中产生独特的摩擦和磨损特性。 为了检验这些假设,PI 将把非晶薄膜的纳米制造与先进的摩擦和纳米力学测试技术结合起来。如果成功,该项目可能会显着提高 NEMS/MEMS 组件、磁性数据存储设备和耐磨涂层的可靠性和功能性。 该项目得出的概念和知识将对金属玻璃、涂层、纳米力学、NEMS/MEMS 和摩擦学界产生巨大的科学意义。 此外,该项目还将为德克萨斯农工大学 (TAMU) 的研究生和本科生提供研究培训。 TAMU 资助的“博士之路项目”将特别努力招收女性和其他少数民族学生。 该项目还将在介绍先进纳米材料时将相关成果纳入课堂,从而加强材料科学和纳米工程课程,并使相对较新的材料科学与工程研究生课程受益。 PI 将通过 NSF-RET 计划让高中教师参与研究项目以及参加国际会议,从而向更广泛的受众传播研究结果。 与国家实验室的合作将为研究生提供暑期研究经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xinghang Zhang其他文献

Plastic deformation in nanocrystalline TiN at ultra-low stress: An in situ nanoindentation study
超低应力下纳米晶 TiN 的塑性变形:原位纳米压痕研究
In situ studies on temperature‐dependent deformation mechanisms of Al2O3 prepared by spark plasma sintering
放电等离子烧结制备 Al2O3 温度依赖性变形机制的原位研究
  • DOI:
    10.1111/jace.19964
  • 发表时间:
    2024-06-19
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Chao Shen;T. Niu;Jaehun Cho;Tianyi Sun;A. Shang;Yifan Zhang;Haiyan Wang;Xinghang Zhang
  • 通讯作者:
    Xinghang Zhang
Tunable Magnetic and Optical Anisotropy in ZrO2‐Co Vertically Aligned Nanocomposites
ZrO2-Co 垂直排列纳米复合材料中可调磁和光学各向异性
  • DOI:
    10.1002/admi.202300150
  • 发表时间:
    2023-05-28
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Yizhi Zhang;Jiawei Song;Ping Lu;J. Deitz;Di Zhang;H. Dou;Jianan Shen;Zedong Hu;Xinghang Zhang;Haiyan Wang
  • 通讯作者:
    Haiyan Wang
Design of 3D Oxide–Metal Hybrid Metamaterial for Tailorable Light–Matter Interactions in Visible and Near‐Infrared Region
用于可见光和近红外区域可定制光-物质相互作用的 3D 氧化物-金属混合超材料设计
  • DOI:
    10.1002/adom.202001154
  • 发表时间:
    2020-11-08
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Di Zhang;P. Lu;S. Misra;Ashley Wissel;Zihao He;Z. Qi;Xingyao Gao;Xing Sun;Juncheng Liu;Juanjuan Lu;Xinghang Zhang;Haiyan Wang
  • 通讯作者:
    Haiyan Wang
Nanostructured cathode thin films with vertically-aligned nanopores for thin film SOFC and their characteristics
薄膜SOFC用垂直排列纳米孔纳米结构阴极薄膜及其特性
  • DOI:
    10.1016/j.apsusc.2007.07.053
  • 发表时间:
    2007-10-31
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Jongsik Yoon;Roy A. Araujo;N. Grunbaum;L. Baqué;A. Serquis;A. Caneiro;Xinghang Zhang;Haiyan Wang
  • 通讯作者:
    Haiyan Wang

Xinghang Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xinghang Zhang', 18)}}的其他基金

NSF-DFG: Hierarchical Design and Additive Manufacturing of Metallic Programmable Metamaterials
NSF-DFG:金属可编程超材料的分层设计和增材制造
  • 批准号:
    2228266
  • 财政年份:
    2023
  • 资助金额:
    $ 28.36万
  • 项目类别:
    Standard Grant
NSF-DFG: Hierarchical Design and Additive Manufacturing of Metallic Programmable Metamaterials
NSF-DFG:金属可编程超材料的分层设计和增材制造
  • 批准号:
    2228266
  • 财政年份:
    2023
  • 资助金额:
    $ 28.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Interface enabled plasticity in high-strength Co-based intermetallics
合作研究:高强度钴基金属间化合物的界面塑性
  • 批准号:
    2210152
  • 财政年份:
    2022
  • 资助金额:
    $ 28.36万
  • 项目类别:
    Standard Grant
Deformation Mechanisms of Gradient Steels with High Strength and Ductility
高强高塑梯度钢的变形机制
  • 批准号:
    2217727
  • 财政年份:
    2022
  • 资助金额:
    $ 28.36万
  • 项目类别:
    Standard Grant
Mechanics and Kinetics of Void Swelling in Irradiated Nanoporous Materials
辐照纳米多孔材料中空隙膨胀的力学和动力学
  • 批准号:
    1728419
  • 财政年份:
    2017
  • 资助金额:
    $ 28.36万
  • 项目类别:
    Standard Grant
Collaborative Research: deformation mechanisms of fcc and hcp Cobalt with high-density stacking faults
合作研究:具有高密度堆垛层错的fcc和hcp钴的变形机制
  • 批准号:
    1642759
  • 财政年份:
    2016
  • 资助金额:
    $ 28.36万
  • 项目类别:
    Standard Grant
Fundamental mechanisms of removal of stacking fault tetrahedra by mobile low energy boundaries
移动低能边界去除堆垛层错四面体的基本机制
  • 批准号:
    1643915
  • 财政年份:
    2016
  • 资助金额:
    $ 28.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: deformation mechanisms of fcc and hcp Cobalt with high-density stacking faults
合作研究:具有高密度堆垛层错的fcc和hcp钴的变形机制
  • 批准号:
    1508366
  • 财政年份:
    2015
  • 资助金额:
    $ 28.36万
  • 项目类别:
    Standard Grant
Fundamental mechanisms of removal of stacking fault tetrahedra by mobile low energy boundaries
移动低能边界去除堆垛层错四面体的基本机制
  • 批准号:
    1304101
  • 财政年份:
    2013
  • 资助金额:
    $ 28.36万
  • 项目类别:
    Continuing Grant
Novel Magnetic Shape Memory Alloy Thin Films for Sensor and Actuator Applications
用于传感器和执行器应用的新型磁性形状记忆合金薄膜
  • 批准号:
    1129065
  • 财政年份:
    2011
  • 资助金额:
    $ 28.36万
  • 项目类别:
    Standard Grant

相似国自然基金

PCSK6经Raf-MEK1/2-ERK1/2通路调控肿瘤细胞上皮间质可塑性促进胰腺癌肝脏转移的研究
  • 批准号:
    82373012
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
小细胞肺癌脑、肾上腺等多器官转移的谱系可塑性机制与干预研究
  • 批准号:
    82330087
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
  • 批准号:
    32371047
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
  • 批准号:
    82304478
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
逍遥散通过IDO1调控小胶质细胞吞噬作用改善神经可塑性治疗抑郁症的机制研究
  • 批准号:
    82305176
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Universality in the yielding of thermal amorphous plasticity
热非晶塑性屈服的普遍性
  • 批准号:
    559986-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 28.36万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Universality in the yielding of thermal amorphous plasticity
热非晶塑性屈服的普遍性
  • 批准号:
    559986-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 28.36万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Universality in the yielding of thermal amorphous plasticity
热非晶塑性屈服的普遍性
  • 批准号:
    559986-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 28.36万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Universality in the yielding of thermal amorphous plasticity
热非晶塑性屈服的普遍性
  • 批准号:
    559986-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 28.36万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Size-Dependent Strength and Plasticity in Metallic Nanocrystalline-Amorphous Composites
金属纳米晶非晶复合材料中尺寸相关的强度和塑性
  • 批准号:
    430800-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 28.36万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了