Mechanics and Kinetics of Void Swelling in Irradiated Nanoporous Materials
辐照纳米多孔材料中空隙膨胀的力学和动力学
基本信息
- 批准号:1728419
- 负责人:
- 金额:$ 53.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There is a significant demand for the discovery of advanced materials that can survive high temperature and high-dose radiations for next generation nuclear reactors. Under these operating conditions, a large number of metallic materials develop voids that result in embrittlement and consequent failure. Void swelling occurs as radiation induces atomic defects that migrate elsewhere leaving clusters of vacant positions behind. These vacancy clusters form voids and grow continuously. The principal investigators' initial study shows just the opposite phenomenon, however: that is, voids in metals with existing nanoscale pores shrink rather than expand during radiation. This research will investigate this phenomenon and may add radically to the understanding of fundamental mechanisms of radiation damage mitigation. A positive outcome will enhance the design of radiation tolerant nanoporous materials for advanced nuclear energy systems. In this project, special effort will be made to recruit female and other minority students. Additionally, collaborations with scientists at Argonne National Laboratories and Los Alamos National Laboratory will offer graduate students summer research experience at premier national labs. The goal of this project is to understand, via a combination of modeling and experiments, the fundamental mechanisms through which deliberately introduced nanovoids in nanoporous metallic materials can absorb and eliminate radiation induced point defects, and ultimately curtail void swelling significantly and alleviate radiation embrittlement. The innovative concepts put forward here are the possibility of utilizing nanovoids and their stress field to trap, store and annihilate various defect species associated with radiation damage, and restore the capability to absorb defects continuously. Furthermore, nanoporous metals may have enhanced plasticity in comparison to radiation embrittlement frequently observed in bulk fully-dense counterparts. This study integrates in situ radiation experiments with phase field modeling to investigate the kinetics of void swelling, and combine in situ nanomechanical testing with dislocation dynamics modeling to explore mechanics and plasticity of irradiated nanoporous metals.
下一代核反应堆迫切需要发现能够承受高温和高剂量辐射的先进材料。在这些操作条件下,大量金属材料会产生空隙,导致脆化并随之发生故障。当辐射引起原子缺陷迁移到其他地方并留下空位簇时,就会发生空洞膨胀。这些空位簇形成空隙并不断生长。然而,主要研究人员的初步研究显示了相反的现象:即,具有纳米级孔隙的金属中的空隙在辐射过程中收缩而不是扩张。这项研究将调查这一现象,并可能从根本上增进对减轻辐射损伤基本机制的理解。积极的成果将增强先进核能系统的耐辐射纳米多孔材料的设计。在这个项目中,将特别努力招收女性和其他少数民族学生。此外,与阿贡国家实验室和洛斯阿拉莫斯国家实验室科学家的合作将为研究生提供在顶级国家实验室的暑期研究经验。该项目的目标是通过建模和实验相结合,了解在纳米多孔金属材料中故意引入纳米空隙可以吸收和消除辐射引起的点缺陷,并最终显着减少空隙膨胀并减轻辐射脆化的基本机制。这里提出的创新概念是利用纳米空隙及其应力场来捕获、存储和消灭与辐射损伤相关的各种缺陷物质,并恢复连续吸收缺陷的能力。此外,与在块状全致密对应物中经常观察到的辐射脆化相比,纳米多孔金属可能具有增强的可塑性。本研究将原位辐射实验与相场建模相结合,研究空隙膨胀的动力学,并将原位纳米力学测试与位错动力学建模相结合,探索辐照纳米多孔金属的力学和塑性。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The influence of helium and heavy ion irradiations on radiation responses of single crystal Cu with nanovoids: An in situ TEM study
氦和重离子辐照对纳米空隙单晶铜辐射响应的影响:原位 TEM 研究
- DOI:10.1016/j.actamat.2022.118293
- 发表时间:2022-08-01
- 期刊:
- 影响因子:9.4
- 作者:C. Fan;Z. Shang;Meimei Li;Haiyan Wang;A. El;Xinghang Zhang
- 通讯作者:Xinghang Zhang
In situ study on heavy ion irradiation induced microstructure evolution in single crystal Cu with nanovoids at elevated temperature
高温下重离子辐照诱导纳米孔单晶铜微观结构演化的原位研究
- DOI:10.1016/j.mtcomm.2022.104418
- 发表时间:2022-12
- 期刊:
- 影响因子:3.8
- 作者:Niu, Tongjun;Rayaprolu, Sreekar;Shang, Zhongxia;Sun, Tianyi;Fan, Cuncai;Zhang, Yifan;Shen, Chao;Nasim, Md;Chen, Wei;Li, Meimei;et al
- 通讯作者:et al
Superior twin stability and radiation resistance of nanotwinned Ag solid solution alloy
纳米孪晶银固溶体合金具有优异的孪晶稳定性和抗辐射性能
- DOI:10.1016/j.actamat.2018.03.052
- 发表时间:2018-06-01
- 期刊:
- 影响因子:9.4
- 作者:Jin Li;D. Xie;S. Xue;C. Fan;Youxing Chen;H. Wang;Jian Wang;Xinghang Zhang
- 通讯作者:Xinghang Zhang
Defect evolution in heavy ion irradiated nanotwinned Cu with nanovoids
重离子辐照具有纳米空隙的纳米孪晶铜中的缺陷演化
- DOI:10.1016/j.jnucmat.2017.09.031
- 发表时间:2017-12-01
- 期刊:
- 影响因子:3.1
- 作者:C. Fan;Youxing Chen;Jin Li;Jie Ding;Haiyan Wang;Xinghang Zhang
- 通讯作者:Xinghang Zhang
Thermal stability of immiscible Cu-Ag/Fe triphase multilayers with triple junctions
具有三联结的不混溶 Cu-Ag/Fe 三相多层膜的热稳定性
- DOI:10.1016/j.actamat.2021.116679
- 发表时间:2021-04-15
- 期刊:
- 影响因子:9.4
- 作者:T. Niu;Yifan Zhang;Jaehun Cho;Jin Li;Haiyan Wang;Xinghang Zhang
- 通讯作者:Xinghang Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinghang Zhang其他文献
Plastic deformation in nanocrystalline TiN at ultra-low stress: An in situ nanoindentation study
超低应力下纳米晶 TiN 的塑性变形:原位纳米压痕研究
- DOI:
10.1016/j.msea.2015.10.002 - 发表时间:
2016-01-05 - 期刊:
- 影响因子:6.4
- 作者:
J. Jian;J. Lee;Yue Liu;F. Khatkhatay;Kaiyuan Yu;Qing Su;Xinghang Zhang;Liang Jiao;Haiyan Wang - 通讯作者:
Haiyan Wang
In situ studies on temperature‐dependent deformation mechanisms of Al2O3 prepared by spark plasma sintering
放电等离子烧结制备 Al2O3 温度依赖性变形机制的原位研究
- DOI:
10.1111/jace.19964 - 发表时间:
2024-06-19 - 期刊:
- 影响因子:3.9
- 作者:
Chao Shen;T. Niu;Jaehun Cho;Tianyi Sun;A. Shang;Yifan Zhang;Haiyan Wang;Xinghang Zhang - 通讯作者:
Xinghang Zhang
Tunable Magnetic and Optical Anisotropy in ZrO2‐Co Vertically Aligned Nanocomposites
ZrO2-Co 垂直排列纳米复合材料中可调磁和光学各向异性
- DOI:
10.1002/admi.202300150 - 发表时间:
2023-05-28 - 期刊:
- 影响因子:5.4
- 作者:
Yizhi Zhang;Jiawei Song;Ping Lu;J. Deitz;Di Zhang;H. Dou;Jianan Shen;Zedong Hu;Xinghang Zhang;Haiyan Wang - 通讯作者:
Haiyan Wang
Design of 3D Oxide–Metal Hybrid Metamaterial for Tailorable Light–Matter Interactions in Visible and Near‐Infrared Region
用于可见光和近红外区域可定制光-物质相互作用的 3D 氧化物-金属混合超材料设计
- DOI:
10.1002/adom.202001154 - 发表时间:
2020-11-08 - 期刊:
- 影响因子:9
- 作者:
Di Zhang;P. Lu;S. Misra;Ashley Wissel;Zihao He;Z. Qi;Xingyao Gao;Xing Sun;Juncheng Liu;Juanjuan Lu;Xinghang Zhang;Haiyan Wang - 通讯作者:
Haiyan Wang
Nanostructured cathode thin films with vertically-aligned nanopores for thin film SOFC and their characteristics
薄膜SOFC用垂直排列纳米孔纳米结构阴极薄膜及其特性
- DOI:
10.1016/j.apsusc.2007.07.053 - 发表时间:
2007-10-31 - 期刊:
- 影响因子:6.7
- 作者:
Jongsik Yoon;Roy A. Araujo;N. Grunbaum;L. Baqué;A. Serquis;A. Caneiro;Xinghang Zhang;Haiyan Wang - 通讯作者:
Haiyan Wang
Xinghang Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinghang Zhang', 18)}}的其他基金
NSF-DFG: Hierarchical Design and Additive Manufacturing of Metallic Programmable Metamaterials
NSF-DFG:金属可编程超材料的分层设计和增材制造
- 批准号:
2228266 - 财政年份:2023
- 资助金额:
$ 53.93万 - 项目类别:
Standard Grant
NSF-DFG: Hierarchical Design and Additive Manufacturing of Metallic Programmable Metamaterials
NSF-DFG:金属可编程超材料的分层设计和增材制造
- 批准号:
2228266 - 财政年份:2023
- 资助金额:
$ 53.93万 - 项目类别:
Standard Grant
Collaborative Research: Interface enabled plasticity in high-strength Co-based intermetallics
合作研究:高强度钴基金属间化合物的界面塑性
- 批准号:
2210152 - 财政年份:2022
- 资助金额:
$ 53.93万 - 项目类别:
Standard Grant
Deformation Mechanisms of Gradient Steels with High Strength and Ductility
高强高塑梯度钢的变形机制
- 批准号:
2217727 - 财政年份:2022
- 资助金额:
$ 53.93万 - 项目类别:
Standard Grant
Collaborative Research: deformation mechanisms of fcc and hcp Cobalt with high-density stacking faults
合作研究:具有高密度堆垛层错的fcc和hcp钴的变形机制
- 批准号:
1642759 - 财政年份:2016
- 资助金额:
$ 53.93万 - 项目类别:
Standard Grant
Fundamental mechanisms of removal of stacking fault tetrahedra by mobile low energy boundaries
移动低能边界去除堆垛层错四面体的基本机制
- 批准号:
1643915 - 财政年份:2016
- 资助金额:
$ 53.93万 - 项目类别:
Continuing Grant
Collaborative Research: deformation mechanisms of fcc and hcp Cobalt with high-density stacking faults
合作研究:具有高密度堆垛层错的fcc和hcp钴的变形机制
- 批准号:
1508366 - 财政年份:2015
- 资助金额:
$ 53.93万 - 项目类别:
Standard Grant
Fundamental mechanisms of removal of stacking fault tetrahedra by mobile low energy boundaries
移动低能边界去除堆垛层错四面体的基本机制
- 批准号:
1304101 - 财政年份:2013
- 资助金额:
$ 53.93万 - 项目类别:
Continuing Grant
Friction and plasticity of amorphous metal coatings
非晶金属涂层的摩擦和塑性
- 批准号:
1161978 - 财政年份:2012
- 资助金额:
$ 53.93万 - 项目类别:
Standard Grant
Novel Magnetic Shape Memory Alloy Thin Films for Sensor and Actuator Applications
用于传感器和执行器应用的新型磁性形状记忆合金薄膜
- 批准号:
1129065 - 财政年份:2011
- 资助金额:
$ 53.93万 - 项目类别:
Standard Grant
相似国自然基金
受载构造煤体颗粒力链演化对瓦斯扩散动力学控制机制研究
- 批准号:52374189
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于系统动力学的复杂网络系统容错控制及新型电力系统安全域理论研究
- 批准号:62373089
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于火焰法研究石墨烯缺陷与纳米孔形成的动力学机制
- 批准号:12304211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
变重力下三维拓扑表面微液滴合并弹跳动力学及其强化冷凝传热机理研究
- 批准号:52376049
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
东亚寒潮的多尺度子空间特征提取与多尺度动力学研究
- 批准号:42305067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular mechanisms that regulate the kinetics of neurotransmitter release
调节神经递质释放动力学的分子机制
- 批准号:
DP240102418 - 财政年份:2024
- 资助金额:
$ 53.93万 - 项目类别:
Discovery Projects
In-situ X-ray Scattering Studies of Oxide Epitaxial Growth Kinetics and Dynamics
氧化物外延生长动力学和动力学的原位 X 射线散射研究
- 批准号:
2336506 - 财政年份:2024
- 资助金额:
$ 53.93万 - 项目类别:
Continuing Grant
CAREER: Understanding the Impact of Dephosphorylation Kinetics and Adapter Specificity on Synthetic T Cell Receptor Signaling and Function
职业:了解去磷酸化动力学和接头特异性对合成 T 细胞受体信号传导和功能的影响
- 批准号:
2339172 - 财政年份:2024
- 资助金额:
$ 53.93万 - 项目类别:
Continuing Grant
EAGER: Enhancement of Ammonia combustion by spatiotemporal control of plasma kinetics
EAGER:通过等离子体动力学的时空控制增强氨燃烧
- 批准号:
2337461 - 财政年份:2024
- 资助金额:
$ 53.93万 - 项目类别:
Standard Grant
Solvent Reorganization Effects on the Kinetics of Electrochemical Hydrogen Evolution
溶剂重组对电化学析氢动力学的影响
- 批准号:
2350501 - 财政年份:2024
- 资助金额:
$ 53.93万 - 项目类别:
Standard Grant