NSF MRI: Acquisition of a Nanoscale 3D Printer for Medical Device Precision Manufacturing at Michigan State University

NSF MRI:密歇根州立大学采购用于医疗器械精密制造的纳米级 3D 打印机

基本信息

  • 批准号:
    2216131
  • 负责人:
  • 金额:
    $ 58.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Title: NSF MRI: Acquisition of a Nanoscale 3D Printer for Medical Device Precision Manufacturing at Michigan State UniversityAbstractPrecision manufacturing is a dominating factor for future medical technology innovation. This project seeks to accelerate the precision medical device research at Michigan State University (MSU) and in Midwest Michigan by acquiring a Nanoscribe Photonic Professional GT2. The Nanoscribe instrument is a unique cutting-edge lithography system that allows fabricating micro/nanoscale complex structures from virtual 3D models with low cost, fast speed (100 mm/s), extremely high resolutions (160 nm), and large print volume. The instrument will be housed at the Electrical and Computer Engineering Research Cleanroom (ERC), a multidisciplinary shared research facility available to both MSU and external users. With the Nanoscribe, MSU will become a regional hub for providing high-precision additive manufacturing support to users from MSU as well as other institutes and local companies in Midwest Michigan. The instrument will immediately benefit a diverse team of investigators and their cross-disciplinary research projects from 4 different departments and 3 colleges at MSU and other institutions including Fraunhofer USA Center Midwest, Helen Devos Children Hospital, Washington University in St. Louis, and Oakland University. The associated research is expected to produce numerous patents on medical devices with huge potential to be translated into clinical use. Besides research benefits, the instrument will serve as an educational tool for training multidisciplinary researchers and bioengineers in additive manufacturing, micro/nanoengineering, biotechnologies, physics, environmental science, scientific art, etc. Precision medical device research is one of MSU’s most rapidly growing research areas, where cross-disciplinary collaborations leverage the combined strengths of Colleges of Engineering, Natural Science, and Human Medicine as well as the Institute for Quantitative Health Science & Engineering to create the next generation of micro/nanodevices for medicine and health. The capabilities of the requested Nanoscribe will open many new avenues of research in the following major areas: (1) Neural interface technologies: miniaturized implants for seamless communication with the brain and the nervous systems; (2) Wearables: flexible and/or stretchable sensors for monitoring biophysical markers of wearers’ health; (3) Microfluidics & organoid-on-chip: biomaterial-based, micro/nanostructures to study cell/tissue properties, cell communication in living systems, organoid development and maturation, and aerosol particles; (4) Biomedical micro/nanorobotics: soft, intelligent robotics for adaptive and safe interaction with human body and environments; (5) Biophotonics for ultra-thin biomedical imaging and biosensing. The requested Nanoscribe is an essential enabling tool that will not only address the critical need of a diverse group of researchers to expedite their current/future research in biomedical devices, but also promote multidisciplinary collaborations between engineers and scientists within the department, across MSU, and beyond the institution. Besides medical and health research, the requested Nanoscribe instrument will significantly expand the existing micro/nanomanufacturing capabilities at MSU for serving the needs of micro/nanoscale science, engineering, and technology. By creating state-of-the-art nanoscale objects, the instrument will also serve as an important tool to create scientific training and artistic works to attract students, especially from the underresppreatnd groups, to pursue STEM education and research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
标题:NSF MRI:密歇根州立大学购买用于医疗器械精密制造的纳米级 3D 打印机摘要精密制造是未来医疗技术创新的主导因素,该项目旨在加速密歇根州立大学 (MSU) 和其他国家的精密医疗器械研究。密歇根中西部购买了 Nanoscribe Photonic Professional GT2 Nanoscribe 仪器是一种独特的尖端光刻系统,可以通过虚拟 3D 模型以低成本、快速的方式制造微米/纳米级复杂结构。 (100 毫米/秒)、极高分辨率 (160 纳米) 和大打印量,该仪器将安装在电气和计算机工程研究洁净室 (ERC),这是一个可供密歇根州立大学和外部用户使用的多学科共享研究设施。借助 Nanoscribe,密歇根州立大学将成为为密歇根州立大学以及密歇根中西部其他机构和当地公司的用户提供高精度增材制造支持的区域中心。该仪器将立即使多元化的研究人员团队及其跨学科研究受益。项目来自密歇根州立大学的 4 个不同部门和 3 个学院以及其他机构,包括弗劳恩霍夫美国中西部中心、海伦·德沃斯儿童医院、圣路易斯华盛顿大学和奥克兰大学,相关研究预计将产生大量具有巨大潜力的医疗设备专利。除了转化为临床应用之外,该仪器还将作为培训增材制造、微/纳米工程、生物技术、物理学、环境科学、科学艺术等领域的多学科研究人员和生物工程师的教育工具。精密医疗器械研究是其中之一。密歇根州立大学发展最快的研究领域,跨学科合作利用工程学院、自然科学学院、人类医学学院以及定量健康科学与工程研究所的综合优势,创造下一代用于医学和医学的微/纳米设备。 Nanoscribe 的功能将为以下主要领域开辟许多新的研究途径:(1) 神经接口技术:用于与大脑和神经系统无缝通信的微型植入物;(2) 可穿戴设备:用于监测佩戴者健康的生物物理标记的柔性和/或可拉伸传感器;(3)微流体和片上类器官:基于生物材料的微/纳米结构,用于研究细胞/组织特性、生命系统中的细胞通信、类器官的发育和成熟;和气溶胶颗粒;(4)生物医学微/纳米机器人:用于与人体和环境进行适应性和安全交互的软智能机器人;(5)用于超薄生物医学成像和所要求的 Nanoscribe 是一种重要的支持工具,不仅可以满足不同研究人员群体加快当前/未来生物医学设备研究的迫切需求,还可以促进整个密歇根州立大学部门内工程师和科学家之间的多学科合作。除了医疗和健康研究之外,所需的 Nanoscribe 仪器还将显着扩展密歇根州立大学现有的微/纳米制造能力,以满足微/纳米科学、工程和技术的需求。该仪器不仅是最先进的纳米级物体,还将作为创造科学培训和艺术作品的重要工具,以吸引学生,特别是来自贫困群体的学生,从事 STEM 教育和研究。该奖项反映了 NSF 的法定使命和通过使用基金会的智力价值和更广泛的影响审查标准进行评估,该项目被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wen Li其他文献

Approximate analytical solutions for the trapped electron distribution due to quasi‐linear diffusion by whistler mode waves
惠斯勒模式波准线性扩散引起的俘获电子分布的近似解析解
Pharmacokinetic and ocular microdialysis study of oral ginkgo biloba extract in rabbits by UPLC‐MS/MS determination
UPLC-MS/MS 测定兔口服银杏叶提取物的药代动力学和眼部微透析研究
  • DOI:
    10.1111/jphp.12791
  • 发表时间:
    2017-08-15
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Shuya Wang;Ding Li;Jiaxin Pi;Wen Li;Bing Zhang;Dongli Qi;Nan Li;Pan Guo;Zhidong Liu
  • 通讯作者:
    Zhidong Liu
Mg Alloys Development and Surface Modification for Biomedical Application
生物医学应用镁合金开发和表面改性
  • DOI:
    10.5772/13187
  • 发表时间:
    2011-01-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Guan;Junhua Hu;Liguo Wang;Shijie Zhu;Huanxin Wang;Jun Wang;Wen Li;Zhen;Shuai Chen;E. Meng;J. H. Gao;S. Hou;Bin Wang;Binbin Che
  • 通讯作者:
    Binbin Che
Power and Frequency Selection optimization in Anti-Jamming Communication: A Deep Reinforcement Learning Approach
抗干扰通信中的功率和频率选择优化:一种深度强化学习方法
Fight Against Smart Communication Rival: An Intelligent Jamming Approach With Trend-Oriented Efficacy Evaluation
对抗智能通信对手:基于趋势的效能评估的智能干扰方法
  • DOI:
    10.1109/lwc.2022.3199743
  • 发表时间:
    2022-11-01
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Zhibin Feng;Yuhua Xu;Yutao Jiao;Guoxin Li;Wen Li;Gui Fang
  • 通讯作者:
    Gui Fang

Wen Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wen Li', 18)}}的其他基金

Collaborative Research: SCH: A wireless optoelectronic implant for closed-loop control of bi-hormone secretion from genetically modified islet organoid grafts
合作研究:SCH:一种无线光电植入物,用于闭环控制转基因胰岛类器官移植物的双激素分泌
  • 批准号:
    2306708
  • 财政年份:
    2023
  • 资助金额:
    $ 58.91万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: A wireless optoelectronic implant for closed-loop control of bi-hormone secretion from genetically modified islet organoid grafts
合作研究:SCH:一种无线光电植入物,用于闭环控制转基因胰岛类器官移植物的双激素分泌
  • 批准号:
    2306708
  • 财政年份:
    2023
  • 资助金额:
    $ 58.91万
  • 项目类别:
    Standard Grant
SitS: Wireless, sustainable, and automated sensory system for in-situ monitoring of soil heavy metals
SitS:用于土壤重金属原位监测的无线、可持续和自动化传感系统
  • 批准号:
    2226500
  • 财政年份:
    2022
  • 资助金额:
    $ 58.91万
  • 项目类别:
    Standard Grant
3D Momentum Imaging of Matrix-Assisted Laser Desorption/Ionization (MALDI) in the Time Domain
时域基质辅助激光解吸/电离 (MALDI) 的 3D 动量成像
  • 批准号:
    2107860
  • 财政年份:
    2021
  • 资助金额:
    $ 58.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Causes and Consequences of Relativistic Electron Precipitation as Revealed by the CubeSat Mission ELFIN’s Pitch-Angle Resolved Loss Cone Measurements
合作研究:立方体卫星任务 ELFIN 的俯仰角解析损耗锥测量揭示的相对论电子沉淀的原因和后果
  • 批准号:
    2019950
  • 财政年份:
    2020
  • 资助金额:
    $ 58.91万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FO: Intelligent Closed-Loop Neural Interface System for Studying Mechanisms of Somatosensory Feedback in Control of Functional and Stable Locomotion
合作研究:NCS-FO:智能闭环神经接口系统,用于研究体感反馈控制功能性和稳定运动的机制
  • 批准号:
    2024270
  • 财政年份:
    2020
  • 资助金额:
    $ 58.91万
  • 项目类别:
    Standard Grant
Probing Multi-Electron Dynamics with Absolute Carrier-Envelope-Phase (CEP) Dependent Strong Field Interaction
利用绝对载流子包络相位 (CEP) 相关的强场相互作用探测多电子动力学
  • 批准号:
    2012098
  • 财政年份:
    2020
  • 资助金额:
    $ 58.91万
  • 项目类别:
    Standard Grant
RET Site: Multidisciplinary Computational Solutions to Smart Sensors and Sensing Systems
RET 站点:智能传感器和传感系统的多学科计算解决方案
  • 批准号:
    1854985
  • 财政年份:
    2019
  • 资助金额:
    $ 58.91万
  • 项目类别:
    Standard Grant
EAGER: Real-Time: Free-Floating Wireless Implantable Optical Stimulators for Untethered Optogenetics
EAGER:实时:用于不受限制的光遗传学的自由浮动无线植入式光学刺激器
  • 批准号:
    1923187
  • 财政年份:
    2019
  • 资助金额:
    $ 58.91万
  • 项目类别:
    Standard Grant
CAREER: Exploring Mysterious Whistler Mode Waves in Earth's Plasmaspheric Plumes
职业:探索地球等离子层羽流中神秘的惠斯勒模式波
  • 批准号:
    1847818
  • 财政年份:
    2019
  • 资助金额:
    $ 58.91万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于轴突密度纵向分析智力障碍患儿语言功能康复中双流语言网络可塑性机制的MRI-NODDI研究
  • 批准号:
    82360337
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于多模态MRI探讨突显网络受损介导自发性癌性爆发痛的机制及TMS干预研究
  • 批准号:
    82371937
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
MRI场强依赖性时域噪声电磁机理与抑制方法研究
  • 批准号:
    52307256
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多模态MRI和DenseNet深度学习构建TAO激素抵抗预测模型的研究
  • 批准号:
    82301263
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于糖酵解代谢重编程机制的糖尿病肾病MRI预后评估研究
  • 批准号:
    82371942
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

MRI: Acquisition of Helium Recovery Equipment For Time-Resolved ARPES at NSF-NeXUS
MRI:在 NSF-NeXUS 采购用于时间分辨 ARPES 的氦回收设备
  • 批准号:
    2320634
  • 财政年份:
    2023
  • 资助金额:
    $ 58.91万
  • 项目类别:
    Standard Grant
NSF MRI Track 2: Acquisition of an Electron Beam Lithography and Imaging System for Research, Education, and Training
NSF MRI 轨道 2:采购用于研究、教育和培训的电子束光刻和成像系统
  • 批准号:
    2320098
  • 财政年份:
    2023
  • 资助金额:
    $ 58.91万
  • 项目类别:
    Standard Grant
NSF-MRI: Acquisition of a Microwave Radiometer for Arctic Atmospheric Boundary Layer Research & Education
NSF-MRI:购买微波辐射计用于北极大气边界层研究
  • 批准号:
    2117971
  • 财政年份:
    2021
  • 资助金额:
    $ 58.91万
  • 项目类别:
    Standard Grant
NSF MRI: Acquisition of a 755 Superconducting Rock Magnetometer System to Enhance the Paleomagnetic and Rock Magnetic Laboratory at New Mexico Highlands University
NSF MRI:采购 755 超导岩石磁力计系统以增强新墨西哥高地大学的古地磁和岩石磁实验室
  • 批准号:
    1623807
  • 财政年份:
    2016
  • 资助金额:
    $ 58.91万
  • 项目类别:
    Standard Grant
NSF-MRI: Acquisition of Integrated Glovebox Vapor Deposition and Spin Coating Systems for Research and Education
NSF-MRI:采购用于研究和教育的集成手套箱气相沉积和旋涂系统
  • 批准号:
    1626449
  • 财政年份:
    2016
  • 资助金额:
    $ 58.91万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了