Problems in Combinatorial Geometry and Ramsey Theory
组合几何和拉姆齐理论中的问题
基本信息
- 批准号:2246847
- 负责人:
- 金额:$ 25.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research project studies several fundamental problems in combinatorial geometry and Ramsey theory. Combinatorial geometry is the study of extremal configurations of points, lines, and other simple geometric objects in Euclidean space. Understanding these extremal configurations is a fundamental mathematical problem, which also has several practical applications such as in motion planning in robotics, visibility and intersection problems in computer graphics, and frequency assignment problems in cellular networks. The area has seen tremendous growth over the past 15 years, with numerous unexpected connections to other mathematical areas such as number theory, logic, and computer science. One of the main goals of this project is to further explore these connections, and the interplay of methods from combinatorics (regularity lemma, probabilistic method, and the container method), topology (cell decomposition), algebraic geometry (polynomial method), and computer science (coding theory). Graduate students will be involved in this project.There are three main areas under investigation. The first area is in incidence geometry, and one of the major goals of this project is to characterize dense point-line arrangements in the plane. The second area of research is in the study of combinatorial and topological problems involving planar arrangements of curves, including graph drawings. The third area is in Ramsey theory, which is a fundamental area of combinatorics that focuses on the appearance of a specific configuration in a sufficiently large system. The PI will continue his long-term study of estimating classical graph and hypergraph Ramsey numbers. He will also study Ramsey-type problems with a geometric flavor, which involve point sets in general position, Heilbronn’s triangle problem, visibility graphs, and unavoidable crossing patterns in graph drawings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在欧几里得空间中,该点数的研究问题和拉姆西理论中的其他相似对象。蜂窝网络中的分配问题。概率方法和容器方法),拓扑(细胞分解),代数几何学(多项式方法)和计算机科学(编码理论)。平面中的点线排列。组合物的组合集中在足够大的系统中的特定配置的外观。 Heilbronn的三角问题,可见的图和不可避免的交叉模式。该奖项反映了RY任务,并且使用Toundation的Intectual Intelectual Intical Invacter Impacter Implations Implaks Implaks Implactia审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Suk其他文献
Density Theorems for Intersection Graphs of t-Monotone Curves
t-单调曲线交图的密度定理
- DOI:
10.1137/12088104x - 发表时间:
2012 - 期刊:
- 影响因子:0.8
- 作者:
Andrew Suk - 通讯作者:
Andrew Suk
On the Erdos-Szekeres convex polygon problem
关于Erdos-Szekeres凸多边形问题
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Andrew Suk - 通讯作者:
Andrew Suk
On cliques in three-dimensional dense point-line arrangements
三维密集点线排列中的派系
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Andrew Suk;Ji Zeng - 通讯作者:
Ji Zeng
New bounds on the maximum number of edges in k-quasi-planar graphs
k 拟平面图中最大边数的新界限
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Andrew Suk;Bartosz Walczak - 通讯作者:
Bartosz Walczak
A survey of quantitative bounds for hypergraph Ramsey problems
超图拉姆齐问题定量界限的调查
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
D. Mubayi;Andrew Suk - 通讯作者:
Andrew Suk
Andrew Suk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Suk', 18)}}的其他基金
Geometric Ramsey Theory and Incidence Geometry
几何拉姆齐理论和入射几何
- 批准号:
1800736 - 财政年份:2017
- 资助金额:
$ 25.18万 - 项目类别:
Standard Grant
CAREER: Ramsey Theory and Discrete Geometry
职业:拉姆齐理论和离散几何
- 批准号:
1800746 - 财政年份:2017
- 资助金额:
$ 25.18万 - 项目类别:
Continuing Grant
CAREER: Ramsey Theory and Discrete Geometry
职业:拉姆齐理论和离散几何
- 批准号:
1651782 - 财政年份:2017
- 资助金额:
$ 25.18万 - 项目类别:
Continuing Grant
Geometric Ramsey Theory and Incidence Geometry
几何拉姆齐理论和入射几何
- 批准号:
1500153 - 财政年份:2015
- 资助金额:
$ 25.18万 - 项目类别:
Standard Grant
相似国自然基金
离散数学中的样条方法研究
- 批准号:11301060
- 批准年份:2013
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
样条函数在离散数学中的应用
- 批准号:11226326
- 批准年份:2012
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
典型群的几何学在图论组合中的应用
- 批准号:11126280
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
认证码的构造及其相关组合问题的研究
- 批准号:61179026
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
典型群几何学及相关的代数组合问题
- 批准号:19571024
- 批准年份:1995
- 资助金额:6.0 万元
- 项目类别:面上项目
相似海外基金
Problems Arising in Combinatorial Algebraic Geometry
组合代数几何中出现的问题
- 批准号:
573649-2022 - 财政年份:2022
- 资助金额:
$ 25.18万 - 项目类别:
University Undergraduate Student Research Awards
CIF: Small: Combinatorial Inverse Problems in Distance Geometry
CIF:小:距离几何中的组合反问题
- 批准号:
1817577 - 财政年份:2018
- 资助金额:
$ 25.18万 - 项目类别:
Standard Grant
AF: Small: Metric Geometry for Combinatorial Problems
AF:小:组合问题的度量几何
- 批准号:
1217256 - 财政年份:2012
- 资助金额:
$ 25.18万 - 项目类别:
Standard Grant
Problems at the interface between Ramsey Theory and Combinatorial Geometry
拉姆齐理论与组合几何之间的接口问题
- 批准号:
1001667 - 财政年份:2010
- 资助金额:
$ 25.18万 - 项目类别:
Standard Grant
Combinatorial Problems Arising From Algebraic Geometry
代数几何引起的组合问题
- 批准号:
318847-2005 - 财政年份:2006
- 资助金额:
$ 25.18万 - 项目类别:
Postgraduate Scholarships - Doctoral