Collaborative Research: Mathematical and experimental analysis of the interaction between competitors and a shared predator - from patches to landscapes
合作研究:对竞争对手和共同捕食者之间的相互作用进行数学和实验分析 - 从斑块到景观
基本信息
- 批准号:2246724
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Ecologists today are faced with a most pressing concern: ensuring long-term survival and coexistence of species in the face of habitat loss and fragmentation. An innovative aspect of this project is the close integration of experimental and mathematical analyses to investigate impacts of habitat fragmentation, interspecific competition, and predation on coexistence of species at patch and landscape levels. This research will provide a more comprehensive understanding of the complex relationships that drive ecological systems and contribute to the development of effective conservation strategies. Two important questions regarding biology of interacting species are considered: 1) do predators affect the relationship between density and prey emigration, Allee effects and local or regional stability of prey species? and 2) does the presence of predators affect occurrence or strength of competition-dispersal, competition-reproduction or dispersal-reproduction tradeoffs and therefore coexistence of competitors? The project will also provide significant contributions towards analysis of mathematical models created to study this behavior via development of new tools to better understand model dynamics. Project results will be disseminated to the ecological and mathematical communities through various media including peer-reviewed mathematical and ecology journals and talks at national conferences. This project will involve training of graduate and undergraduate students through mentorship of independent research projects and PI-hosted workshops, with a session geared toward high-school students/teachers that focuses on illustrating value and applicability of mathematical models and ecological experiments to address societal problems. Moreover, an app that estimates key dispersal parameters from field data will be created and made publicly available.This project combines reaction-diffusion models, mathematical analysis, and experimental research to investigate how habitat fragmentation, conditional dispersal, interspecific competition, and predation influence population dynamics and species coexistence at single patch to landscape scales. The project will involve the study of diffusive Lotka-Volterra competition and predator-prey systems with nonlinear boundary conditions designed to model how density dependent emigration (DDE) affects the dynamics of species at different spatial scales and experiments with two Tribolium flour beetle species and a shared natural enemy to measure DDE relationships and life-history tradeoffs under predation pressure. The Investigators will develop and analyze mathematical models based on the experimental data to explore effects of DDE on coexistence, invasion, and pattern formation. This project is expected to be novel and significant by providing (1) much-needed experimental evidence that interspecific competitors and predators affect boundary behavior namely, the strength and form of DDE, and important life-history tradeoffs linked to species coexistence; (2) the first theoretical framework for the effects of conditional dispersal on the population dynamics and coexistence of competing species and a shared predator in fragmented landscapes; and (3) a significant contribution toward the analysis of systems of elliptic boundary value problems with nonlinear boundary conditions, to better understand model dynamics. Results from this study are expected to be applicable to conservation programs and reserve design. Specifically, this model framework can be used to investigate how Allee-like effects can arise from context-dependent dispersal to affect minimum patch sizes, carrying capacities, density-area relationships, species-area relationships, and multiple stable states.This project is jointly funded by the MPS Division of Mathematical Sciences (DMS) through the Mathematical Biology Program, the Established Program to Stimulate Competitive Research (EPSCoR), and the BIO Division of Environmental Biology through the Population and Community Ecology Cluster.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
今天的生态学家面临着最紧迫的关注:面对栖息地的丧失和破碎,确保物种的长期生存和共存。该项目的一个创新方面是实验和数学分析的紧密整合,以研究栖息地碎片,种间竞争以及对斑块和景观水平上物种共存的影响的影响。这项研究将为促进生态系统的复杂关系提供更全面的理解,并有助于开发有效的保护策略。考虑了有关相互作用物种生物学的两个重要问题:1)捕食者是否会影响密度与猎物移民,属性影响以及猎物物种的局部或区域稳定之间的关系? 2)捕食者的存在会影响竞争 - 竞争,竞争改造或散布生产的竞争的发生或力量,从而使竞争者共存?该项目还将为分析用于研究这种行为的数学模型的分析提供重要贡献,从而开发新工具,以更好地了解模型动态。项目结果将通过各种媒体(包括经过同行评审的数学和生态学期刊以及在国家会议上的谈话)传播到生态和数学社区。该项目将涉及通过对独立研究项目和PI托管研讨会的指导来培训研究生和本科生,并为高中生/老师提供了一项会议,专注于说明数学模型和生态实验的价值和适用性,以解决社会问题。此外,将创建并公开创建一个估算现场数据的关键分散参数的应用程序。该项目结合了反应扩散模型,数学分析和实验研究,以研究栖息地分散,有条件的分散,种间竞争和捕食人群如何影响动态和物种在单个斑块上共存于景观量表。该项目将涉及对具有非线性边界条件的扩散Lotka-volterra竞争和捕食者捕集系统的研究共享自然敌人,以衡量DDE的关系和捕食压力下的生活历史权衡。研究者将根据实验数据开发和分析数学模型,以探索DDE对共存,侵袭和模式形成的影响。通过提供(1)急需的实验证据,该项目将是新颖和重要的,表明种间竞争者和捕食者会影响边界行为,即DDE的强度和形式,以及与物种共存有关的重要生活历史折衷方案; (2)有条件扩散对竞争物种的种群动态和共享景观中共享的捕食者的影响的第一个理论框架; (3)在非线性边界条件下对椭圆边界值问题分析的分析有重要贡献,以更好地理解模型动力学。 这项研究的结果预计将适用于保护计划和储备设计。具体而言,该模型框架可用于调查如何依赖上下文依赖性的效果来影响最小斑块大小,携带能力,密度 - 区域关系,物种区域关系和多个稳定状态。通过数学生物学计划,既定的竞争研究计划(EPSCOR)和通过人口和社区生态集群刺激竞争性研究的既定计划(EPSCOR)的既定计划(EPSCOR)资助的数学科学部(DMS)资助。该奖项反映了NSF的法定任务和法定任务使用基金会的知识分子优点和更广泛的审查标准,通过评估被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Cronin其他文献
Document Title: Comparing Safety Outcomes in Police Use-Of- Force Cases for Law Enforcement Agencies That Have Deployed Conducted Energy Devices and A Matched Comparison Group That Have Not: A Quasi-Experimental Evaluation
文件标题:比较已部署传导能源设备的执法机构与未部署传导能源设备的匹配比较组在警察使用武力案件中的安全结果:准实验评估
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Bruce G. Taylor;Daniel J. Woods;B. Kubu;C. Koper;B. Tegeler;Jason Cheney;M. Martínez;James Cronin - 通讯作者:
James Cronin
The Little Book of Plastics in Everyday Life
日常生活中的塑料小书
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
James Cronin - 通讯作者:
James Cronin
James Cronin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Cronin', 18)}}的其他基金
Collaborative Research: Mathematical and Experimental Analysis of Competitive and Predator-Prey Models: Conditional Dispersal on Patches to Landscapes
合作研究:竞争模型和捕食者-被捕食模型的数学和实验分析:景观斑块的条件扩散
- 批准号:
2150947 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Mathematical and Experimental Analysis of Competitive Ecological Models: Patches, Landscapes, Stage Structure, and Conditional Dispersal on the Boundary
合作研究:竞争性生态模型的数学和实验分析:斑块、景观、阶段结构和边界上的条件扩散
- 批准号:
1853359 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Mathematical and Experimental Analysis of Ecological Models: Patches, Landscapes and Conditional Dispersal on the Boundary
合作研究:生态模型的数学和实验分析:斑块、景观和边界上的条件扩散
- 批准号:
1516833 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Dissertation Research: Drivers of plant invasions: The role of fungi, nutrient availability and competition among plants
论文研究:植物入侵的驱动因素:真菌的作用、养分可用性和植物之间的竞争
- 批准号:
1501775 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
US-Denmark-Czech Republic-China planning visit to develop an integrative approach to understanding range expansions and biological invasions under global change regimes
美国-丹麦-捷克共和国-中国计划访问,以制定综合方法来了解全球变化机制下的范围扩张和生物入侵
- 批准号:
1419966 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: Latitudinal variation in invasive plant-herbivore interactions and implications for invasion success
合作研究:入侵植物与草食动物相互作用的纬度变化及其对入侵成功的影响
- 批准号:
1050084 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Pierre Auger Project - Observatory's Operating Costs
皮埃尔俄歇项目 - 天文台的运营成本
- 批准号:
0969400 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Vulnerable host stages, development time and host-parasitoid stability - The first experimental test
合作研究:脆弱宿主阶段、发育时间和宿主-寄生蜂稳定性——第一次实验测试
- 批准号:
1020867 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Pierre Auger Project - Observatory's Operating Costs
皮埃尔俄歇项目 - 天文台的运营成本
- 批准号:
0450697 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
肠道微生物动态演变数学模型构建及壳寡糖转运代谢过程研究
- 批准号:32302102
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高维零磁扩散磁流体力学方程组若干数学问题的研究
- 批准号:12371227
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
大气海洋本原方程的数学理论研究
- 批准号:12371238
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
多模态数学问题理解和类人解答方法研究
- 批准号:62376012
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于隐含知识挖掘与高效表示学习的初等数学自动解答研究
- 批准号:62377021
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317573 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401257 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317570 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant