Random functions and stochastic processes on random graphs
随机图上的随机函数和随机过程
基本信息
- 批准号:2246575
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The analysis of roots of polynomials with random coefficients is a growing area with applications in subfields across mathematics, including approximation theory, mathematical physics, and ordinary differential equations. This project will investigate various features of the distribution of the number of roots. Another focus of this project is the contact process on random networks, aiming to understand the dynamics of contagion as it spreads through complex interconnected systems. This work will provide insight into real-world epidemics and information dissemination, leading to the development of more effective strategies for controlling and preventing the spread of infections or ideas. This research project seeks to deepen our understanding of these ubiquitous random structures and to explore their applications in real-world problems. Graduate and undergraduate students will be mentored as part of this project, and the research findings will be disseminated through publications and research talks, reaching a wide audience.More specifically, this research project will investigate the universality of variances and higher moments of the number of real roots, along with the asymptotic distribution of this number. To achieve this, various universality techniques will be used to develop new tools and connections. Regarding the contact process, the project specifically focuses on the susceptible-infected-susceptible (SIS) model and will explore the phase transition of the survival time. Novel ideas and methods will be pursued to rigorously analyze the SIS contact process. Through these projects, new connections between different areas are anticipated to emerge, leading to fresh insights and applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
与随机系数的多项式的根对根的分析是一个生长区域,在数学跨越子场中应用,包括近似理论,数学物理学和普通的微分方程。该项目将调查根部分布的各种特征。该项目的另一个重点是随机网络上的接触过程,旨在了解传播通过复杂的互连系统传播时的动态。这项工作将提供对现实世界流行病和信息传播的见解,从而制定了控制和防止感染或思想传播的更有效的策略。该研究项目旨在加深我们对这些普遍存在的随机结构的理解,并探索它们在现实世界中的应用。 研究生和本科生将作为该项目的一部分进行指导,研究结果将通过出版物和研究演讲传播,吸引广泛的受众群体。更具体地说,该研究项目将调查差异的普遍性和实际根源数量的较高时刻,以及该数量的渐近分布。为此,将使用各种普遍性技术来开发新的工具和连接。关于接触过程,该项目专门针对易感感染感染的(SIS)模型,并将探索生存时间的相变。新颖的想法和方法将被追求严格分析SIS接触过程。通过这些项目,预计不同领域之间的新联系将出现,从而带来了新的见解和应用。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的审查标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oanh Nguyen其他文献
Random orthonormal polynomials: local universality and expected number of real roots
随机正交多项式:局部普适性和预期实根数
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yen Q. Do;Oanh Nguyen;V. Vu - 通讯作者:
V. Vu
Meaningful Change in Patient-Reported Outcomes after CAR T-Cell Therapy for Relapsed/Refractory Multiple Myeloma in Standard of Care: Differences By Race and Ethnicity
- DOI:
10.1182/blood-2024-208529 - 发表时间:
2024-11-05 - 期刊:
- 影响因子:
- 作者:
Carina E. Ferraris;Xiaoyin Li;Gabriel De Avila;Lisa M. Gudenkauf;Aasha I. Hoogland;Oanh Nguyen;Yvelise Rodriguez;Sylvia L. Crowder;Nathan Parker;Tiffany L. Carson;Rachid C. Baz;Kenneth H. Shain;Brandon Blue;Ariel Grajales-Cruz;Melissa Alsina;Ciara Louise Freeman;Omar Castaneda;Taiga Nishihori;Hien Liu;Frederick L. Locke - 通讯作者:
Frederick L. Locke
On the mixing time of the Diaconis–Gangolli random walk on contingency tables over $\mathbb{Z}/q\mathbb{Z}$
关于 $mathbb{Z}/qmathbb{Z}$ 上列联表上 Diaconis-Gangolli 随机游走的混合时间
- DOI:
10.1214/19-aihp991 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
E. Nestoridi;Oanh Nguyen - 通讯作者:
Oanh Nguyen
Trajectories of Patient-Reported Outcomes after Idecabtagene Vicleucel Vs. Ciltacabtagene Autoleucel CAR T-Cell Therapy Among Patients with Relapsed/Refractory Multiple Myeloma in Standard of Care
- DOI:
10.1182/blood-2024-208668 - 发表时间:
2024-11-05 - 期刊:
- 影响因子:
- 作者:
Xiaoyin Li;Carina E. Ferraris;Gabriel De Avila;Lisa M. Gudenkauf;Aasha I. Hoogland;Oanh Nguyen;Yvelise Rodriguez;Sylvia L. Crowder;Nathan Parker;Tiffany L. Carson;Rachid C. Baz;Kenneth H. Shain;Brandon Blue;Ariel Grajales-Cruz;Melissa Alsina;Ciara Louise Freeman;Omar Castaneda;Taiga Nishihori;Hien Liu;Frederick L. Locke - 通讯作者:
Frederick L. Locke
Real roots of random orthogonal polynomials with exponential weights
具有指数权重的随机正交多项式的实根
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yen Q. Do;D. Lubinsky;H. Nguyen;Oanh Nguyen;I. Pritsker - 通讯作者:
I. Pritsker
Oanh Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oanh Nguyen', 18)}}的其他基金
Distribution of Roots of Random Functions
随机函数的根的分布
- 批准号:
2211929 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Distribution of Roots of Random Functions
随机函数的根的分布
- 批准号:
2125031 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Distribution of Roots of Random Functions
随机函数的根的分布
- 批准号:
1954174 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
不确定潜能的克隆性造血与急性缺血性卒中功能预后的孟德尔随机化研究
- 批准号:82301481
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑多源随机性的功能梯度板结构非侵入式随机有限元新方法研究
- 批准号:12302255
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于异卵双生子孟德尔随机化的获得性高度近视的致病基因和功能研究
- 批准号:82171091
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
基于随机性质的移动应用软件功能错误自动化检测技术
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
基于随机光学涨落技术的活细胞内线粒体动态与功能成像研究
- 批准号:61805038
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mathematical analysis of submodular set functions and its application to stochastic ranking model
子模集合函数的数学分析及其在随机排序模型中的应用
- 批准号:
22K03358 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical analysis and density functions path-dependent/non-colliding stochastic differential equations with non-bounded coefficients
数值分析和密度函数路径相关/非碰撞随机微分方程与无界系数
- 批准号:
19K14552 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Approximation of Functions with Parameter-Dependent or Stochastic Shock Locations Arising from Hyperbolic Partial Differential Equations
由双曲偏微分方程产生的参数相关或随机冲击位置的函数逼近
- 批准号:
1912703 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Approximation of Functions with Parameter-Dependent or Stochastic Shock Locations Arising from Hyperbolic Partial Differential Equations
由双曲偏微分方程产生的参数相关或随机冲击位置的函数逼近
- 批准号:
1720377 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Pricing and forecasting of sovereign CDS premium with stochastic risk-free rate and default intensity
具有随机无风险利率和违约强度的主权 CDS 溢价的定价和预测
- 批准号:
18K01707 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)