PFI-TT: Artificial Intelligence System for Enterprise Performance Management that Integrates Causal Analytics and Human Expertise

PFI-TT:集成因果分析和人类专业知识的企业绩效管理人工智能系统

基本信息

  • 批准号:
    2141124
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this Partnerships for Innovation - Technology Translation (PFI-TT) project is to respond to the unmet market need for explainable prescriptive (i.e., causal) analytics in enterprise performance management (EPM). If successful, the proposed platform will enable organizations to solve complex, multi-objective management problems, including financial outcomes and well-being for customers, employees, and other stakeholders. The proposed prescriptive analytics solution is expected to optimize decision-making through improvements in enterprise-wide performance. The market for EPM is expected to reach $7.7 billion in sales by 2026, but only 11% of large and medium-sized enterprises currently use some form of prescriptive analytics. Notably, more than 50% of healthcare systems are unsatisfied with currently available EPM software, which leads to decreases in patient satisfaction and operating margins. This project's broader societal impact will help enterprises visually monitor the trade-offs and synergies between economic performance (e.g., return on investment) and well-being outcomes (e.g., customer and employee satisfaction) and identify optimal actions.This project seeks to help organizations deal with the complexity of multi-stakeholder, multi-objective performance management. It builds the first commercial use case in healthcare systems, focusing on healthcare organizations' multi-stakeholder performance management. The technology will develop a Knowledge Graph-Based Reasoning Artificial Intelligence Network, which will enable human-machine collaboration to accelerate the synthesis of domain knowledge from expert documents into causal knowledge graphs and ingest such graphs into causal inference and data science tools. The intellectual merit of the proposed project stems from building a high-performance machine reading system to extract and synthesize causal insights from both academic and industry documents. The team also seeks to develop the first knowledge graph-based reasoning system for enterprise management to identify hidden causal relations and make intervention recommendations. Finally, the project will develop a novel approach to improving causal inference in data science. By combining causal knowledge graphs with a large sample of healthcare system data, the product will create a synthetic counterfactual from observatory data for each healthcare system and run causal analysis to identify the most effective actions for a given set of performance objectives.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该创新合作伙伴关系 - 技术翻译 (PFI-TT) 项目的更广泛影响/商业潜力是为了响应企业绩效管理 (EPM) 中对可解释的规范性(即因果)分析的未满足的市场需求。如果成功,拟议的平台将使组织能够解决复杂的多目标管理问题,包括财务成果以及客户、员工和其他利益相关者的福祉。拟议的规范性分析解决方案预计将通过提高企业范围的绩效来优化决策。到 2026 年,EPM 市场的销售额预计将达到 77 亿美元,但目前只有 11% 的大中型企业使用某种形式的规范性分析。值得注意的是,超过 50% 的医疗保健系统对当前可用的 EPM 软件不满意,这导致患者满意度和运营利润下降。该项目具有更广泛的社会影响,将帮助企业直观地监控经济绩效(例如投资回报)​​和福祉成果(例如客户和员工满意度)之间的权衡和协同作用,并确定最佳行动。该项目旨在帮助组织处理多利益相关者、多目标绩效管理的复杂性。它在医疗保健系统中构建了第一个商业用例,重点关注医疗保健组织的多利益相关者绩效管理。该技术将开发基于知识图的推理人工智能网络,使人机协作能够加速将专家文档中的领域知识合成为因果知识图,并将这些图摄取到因果推理和数据科学工具中。该项目的智力价值源于构建一个高性能机器阅读系统,以从学术和行业文档中提取和综合因果见解。 该团队还寻求开发第一个基于知识图谱的企业管理推理系统,以识别隐藏的因果关系并提出干预建议。 最后,该项目将开发一种新方法来改进数据科学中的因果推理。通过将因果知识图与大量医疗保健系统数据样本相结合,该产品将从每个医疗保健系统的观测数据中创建合成反事实,并运行因果分析,以确定针对一组给定绩效目标的最有效行动。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the relation between K–L divergence and transfer learning performance on causality extraction tasks
因果关系提取任务中 K−L 散度与迁移学习性能的关系
  • DOI:
    10.1016/j.nlp.2024.100055
  • 发表时间:
    2024-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gopalakrishnan, Seethalakshmi;Chen, Victor Zitian;Dou, Wenwen;Zadrozny, Wlodek
  • 通讯作者:
    Zadrozny, Wlodek
Text to Causal Knowledge Graph: A Framework to Synthesize Knowledge from Unstructured Business Texts into Causal Graphs
文本到因果知识图:将非结构化业务文本中的知识合成为因果图的框架
  • DOI:
    10.3390/info14070367
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Gopalakrishnan, Seethalakshmi;Chen, Victor Zitian;Dou, Wenwen;Hahn;Nedunuri, Sreekar;Zadrozny, Wlodek
  • 通讯作者:
    Zadrozny, Wlodek
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wenwen Dou其他文献

Images, Emotions, and Credibility: Effect of Emotional Facial Images on Perceptions of News Content Bias and Source Credibility in Social Media
图像、情感和可信度:情感面部图像对社交媒体中新闻内容偏见和来源可信度的感知的影响
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alireza Karduni;Ryan Wesslen;Douglas Markant;Wenwen Dou
  • 通讯作者:
    Wenwen Dou
Can Data Visualizations Change Minds? Identifying Mechanisms of Elaborative Thinking and Persuasion
数据可视化可以改变想法吗?
Using Resource-Rational Analysis to Understand Cognitive Biases inInteractive Data Visualizations
使用资源理性分析来理解交互式数据可视化中的认知偏差
  • DOI:
    10.1109/tvcg.2021.3114862
  • 发表时间:
    2020-09-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryan Wesslen;D. Markant;Alireza Karduni;Wenwen Dou
  • 通讯作者:
    Wenwen Dou
Evaluating the relationship between user interaction and financial visual analysis
评估用户交互与财务可视化分析之间的关系
I-SI : Scalable Architecture of Analyzing Latent Topical-Level Information From Social Media Data
I-SI:从社交媒体数据分析潜在主题级信息的可扩展架构
  • DOI:
    10.1111/bph.15175
  • 发表时间:
    2024-09-13
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Xiaoyu Wang;Wenwen Dou;Zhiqiang Ma;Jeremy Villalobos;Yang Chen;Thomas Kraft;W. Ribarsky
  • 通讯作者:
    W. Ribarsky

Wenwen Dou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wenwen Dou', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Medium: Information Integrity: A User-centric Intervention
协作研究:SaTC:核心:媒介:信息完整性:以用户为中心的干预
  • 批准号:
    2323795
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
I-Corps: Knowledge Graph Embeddings-based Explainable Artificial Intelligence for Enterprise Performance Management
I-Corps:用于企业绩效管理的基于知识图嵌入的可解释人工智能
  • 批准号:
    2102803
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
I-Corps: Knowledge Graph Embeddings-based Explainable Artificial Intelligence for Enterprise Performance Management
I-Corps:用于企业绩效管理的基于知识图嵌入的可解释人工智能
  • 批准号:
    2102803
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Phase II IUCRC UNC Charlotte Site: Center for Visual and Decision Informatics (CVDI)
第二阶段 IUCRC UNC 夏洛特站点:视觉与决策信息学中心 (CVDI)
  • 批准号:
    1747785
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
  • 批准号:
    32372384
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
苯并呋喃-6-酮类化合物TT01f通过调控Jagged1/Notch信号通路改善特发性肺纤维化的药理学机制研究
  • 批准号:
    82304596
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
TT3.2通过自噬体-液泡途径调控水稻盐胁迫抗性的分子机制研究
  • 批准号:
    32301745
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
核用690TT合金传热管表面划伤诱导应力腐蚀裂纹萌生机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
TT02通过巨噬细胞外囊泡miR-122/Wnt途径拮抗石英诱导肺纤维化的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

PFI–TT: Development of an Explainable and Robust Detector of Forged Multimedia and Cyber Threats using Artificial intelligence
PFI™TT:使用人工智能开发可解释且强大的伪造多媒体和网络威胁检测器
  • 批准号:
    2409577
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
PFI-TT: Development of artificial substrates for growth of human stem cells suitable for clinical applications
PFI-TT:开发适合临床应用的人类干细胞生长人工基质
  • 批准号:
    2234541
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
PFI-TT: Trustworthy Artificial Intelligence for the Volumetric Evaluation of Brain Tumors
PFI-TT:用于脑肿瘤体积评估的值得信赖的人工智能
  • 批准号:
    2234468
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
PFI–TT: Development of an Explainable and Robust Detector of Forged Multimedia and Cyber Threats using Artificial intelligence
PFI™TT:使用人工智能开发可解释且强大的伪造多媒体和网络威胁检测器
  • 批准号:
    2329858
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
PFI-TT: An artificial intelligence system for prediction of wind hazards in civil engineering applications
PFI-TT:用于预测土木工程应用中的风灾的人工智能系统
  • 批准号:
    2140723
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了