NRT-AI: AI Advancements and Convergence in Computational, Environmental, and Social Sciences (AI-ACCESS)

NRT-AI:人工智能在计算、环境和社会科学领域的进步和融合 (AI-ACCESS)

基本信息

  • 批准号:
    2244165
  • 负责人:
  • 金额:
    $ 299.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-15 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

Emerging AI and computational tools have the potential to bring about significant transformation of scientific practice, especially in the environmental and social sciences. In fact, the very nature of important questions in those fields are themselves shifting as social systems are increasingly embedded within computational platforms that mediate daily human activity. However, while huge datasets are rapidly becoming commonplace across the environmental and social sciences, the right methods for understanding data generated by human behavior, as well as accessible tools for studying them, are lacking. In response to this urgent need, this National Science Foundation Research Traineeship (NRT) award establishes the AI Advancements and Convergence in Computational, Environmental, and Social Sciences (AI-ACCESS) NRT Program at Washington University in St. Louis (WashU) in collaboration with University of Houston-Downtown (UHD). The AI-ACCESS program will prepare a cohort of new investigators, trained at the intersection of AI, environmental science, and social sciences, with the skills to capitalize on the synergy in the convergence of AI and environmental social science. The program anticipates training forty-nine (49) doctoral students, including twenty-four (24) funded trainees. AI-ACCESS trainees will fill a growing need for organizations that aspire to develop data-driven policies and computational algorithms to address environmental and social challenges.The AI-ACCESS program leverages WashU's graduate programs in computer science, environmental science, environmental engineering, public health, and social work to develop a new transformative training program with transdisciplinary education, research, and mentoring opportunities. The program includes prefatory courses in AI and machine learning, statistical and causal inference, and environmental sustainability; required courses in communication, teamwork, and ethics; and specialization in one of three research tracks -- computational sciences, environmental sciences, and social sciences. The program also includes recruitment efforts focused on increasing diversity through outreach and by exploiting the synergistic potential between the REU site at WashU and partner UHD, a minority-serving institution; diversity retention efforts through community building activities and peer support programs; and diversity training efforts to ensure that all AI-ACCESS personnel belong in a diverse, inclusive, and connected environment.The NSF Research Traineeship (NRT) Program is designed to encourage the development and implementation of bold, new potentially transformative models for STEM graduate education training. The program is dedicated to effective training of STEM graduate students in high priority interdisciplinary or convergent research areas through comprehensive traineeship models that are innovative, evidence-based, and aligned with changing workforce and research needs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新兴的AI和计算工具有可能对科学实践进行重大转变,尤其是在环境和社会科学中。实际上,这些领域重要问题的本质本身正在转移,因为社会系统越来越多地嵌入到调节日常人类活动的计算平台中。但是,尽管在环境和社会科学中迅速迅速变得司空见惯,但缺乏理解人类行为产生的数据以及可访问的工具的正确方法。为了应对这一迫切需求,这项国家科学基金会研究训练(NRT)奖在圣路易斯大学(WASHU)的华盛顿大学(WASHU)与休斯顿大学(University of Houston-Downtown)合作,建立了AI的进步和融合NRT计划NRT计划的AI进步和融合。 AI-ACESS计划将准备一系列新的调查人员,并在AI,环境科学和社会科学的交集中进行了培训,并具有利用AI和环境社会科学的协同作用的技能。该计划预计培训了49(49)个博士生,包括二十四(24)名资助的学员。 AI-Access学员将满足渴望制定数据驱动政策和计算算法的组织的需求,以应对环境和社会挑战。AI-Access计划利用WASHU在计算机科学,环境科学,环境工程,公共卫生,公共卫生和社会工作中开发新的变革性培训计划,以开发一项新的变革性培训,以开发一项新的变革性培训,以开发一项新的变革性培训计划,并进行了跨学科的教育,研究,研究,研究,并进行了评估。该计划包括AI和机器学习,统计和因果推断以及环境可持续性的预言课程;所需的沟通,团队合作和道德课程;以及在三个研究轨道之一中的专业化 - 计算科学,环境科学和社会科学。该计划还包括招聘工作,重点是通过宣传来增加多样性,并利用REU网站Washu与少数派服务机构的合作伙伴UHD之间的协同潜力;通过社区建设活动和同伴支持计划的多样性保留工作;多样性培训工作以确保所有AI-Access人员都属于多样化,包容和联系的环境。NSF研究训练(NRT)计划旨在鼓励开发和实施大胆的,新的潜在变革性的STEM研究生教育培训模型。该计划致力于通过全面的跨学科或收敛性研究领域的STEM研究生进行有效培训,通过全面的培训模型,这些模型具有创新性,基于循证的,并且与不断变化的劳动力和研究需求保持一致。该奖项反映了NSF的法定任务,并通过使用基金会的知识优点和广泛影响来评估NSF的法定任务,并被视为值得的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Yeoh其他文献

Proactive Dynamic DCOPs
主动动态 DCOP
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Khoi Hoang;Ferdinando Fioretto;Ping Hou;Makoto Yokoo;William Yeoh;Roie Zivan
  • 通讯作者:
    Roie Zivan
Improving National Digital Identity Systems Usage: Human-Centric Cybersecurity Survey
改善国家数字身份系统的使用:以人为本的网络安全调查
  • DOI:
    10.1080/08874417.2023.2251452
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Malyun Hilowle;William Yeoh;M. Grobler;Graeme Pye;F. Jiang
  • 通讯作者:
    F. Jiang
Multi-objective Search via Lazy and Efficient Dominance Checks
通过惰性和高效的优势检查进行多目标搜索
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Carlos Hern´andez;William Yeoh;Jorge A. Baier;Ariel Felner;Oren Salzman;Han Zhang;Shao;Sven Koenig
  • 通讯作者:
    Sven Koenig
Effect of Asynchronous Execution and Imperfect Communication on Max-sum Belief Propagation
异步执行和不完美通信对最大和置信传播的影响
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Zivan;Ben Rachmut;Omer Perry;William Yeoh
  • 通讯作者:
    William Yeoh
Infinite-Horizon Proactive Dynamic DCOPs
Infinite-Horizo​​n 主动动态 DCOP
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Khoi Hoang;Ping Hou;Ferdinando Fioretto;William Yeoh;Roie Zivan;Makoto Yokoo
  • 通讯作者:
    Makoto Yokoo

William Yeoh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Yeoh', 18)}}的其他基金

Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232055
  • 财政年份:
    2023
  • 资助金额:
    $ 299.01万
  • 项目类别:
    Standard Grant
Doctoral Consortium at the 2020 International Joint Conference on Artificial Intelligence (IJCAI 2020)
2020年国际人工智能联合会议(IJCAI 2020)博士联盟
  • 批准号:
    2016182
  • 财政年份:
    2020
  • 资助金额:
    $ 299.01万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Preference Elicitation and Device Scheduling for Smart Homes
RI:小型:协作研究:智能家居的偏好诱导和设备调度
  • 批准号:
    1812619
  • 财政年份:
    2018
  • 资助金额:
    $ 299.01万
  • 项目类别:
    Standard Grant
Doctoral Mentoring Consortium at the Seventeenth International Conference on Autonomous Agents and Multiagent Systems
第十七届自主代理和多代理系统国际会议博士生导师联盟
  • 批准号:
    1818605
  • 财政年份:
    2018
  • 资助金额:
    $ 299.01万
  • 项目类别:
    Standard Grant
Student Support for the 2018 International Conference on Automated Planning and Scheduling (ICAPS 2018)
2018 年自动规划与调度国际会议 (ICAPS 2018) 的学生支持
  • 批准号:
    1823471
  • 财政年份:
    2018
  • 资助金额:
    $ 299.01万
  • 项目类别:
    Standard Grant
CAREER: Decentralized Constraint-Based Optimization for Multi-Agent Planning and Coordination
职业:用于多智能体规划和协调的分散式基于约束的优化
  • 批准号:
    1838364
  • 财政年份:
    2017
  • 资助金额:
    $ 299.01万
  • 项目类别:
    Standard Grant
BSF: 2014012: Robust Solutions for Distributed Constraint Optimization Problems
BSF:2014012:分布式约束优化问题的鲁棒解决方案
  • 批准号:
    1810970
  • 财政年份:
    2017
  • 资助金额:
    $ 299.01万
  • 项目类别:
    Standard Grant
CAREER: Decentralized Constraint-Based Optimization for Multi-Agent Planning and Coordination
职业:用于多智能体规划和协调的分散式基于约束的优化
  • 批准号:
    1550662
  • 财政年份:
    2016
  • 资助金额:
    $ 299.01万
  • 项目类别:
    Standard Grant
BSF: 2014012: Robust Solutions for Distributed Constraint Optimization Problems
BSF:2014012:分布式约束优化问题的鲁棒解决方案
  • 批准号:
    1540168
  • 财政年份:
    2015
  • 资助金额:
    $ 299.01万
  • 项目类别:
    Standard Grant

相似国自然基金

AI-2受体甲基趋化蛋白介导牛月形单胞菌对瘤胃碳水化合物趋化性的作用机制
  • 批准号:
    32302685
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于国产AI芯片的自动布局布线优化算法研究
  • 批准号:
    62306286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人工智能驱动的营销模式和消费者行为研究
  • 批准号:
    72332006
  • 批准年份:
    2023
  • 资助金额:
    165 万元
  • 项目类别:
    重点项目
基于“人工智能算法+高精度遥感数据”的棉花表型信息识别及解析
  • 批准号:
    32360436
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
巴氏杀菌乳中金黄色葡萄球菌和肠毒素A风险预测和溯源的人工智能模型构建研究
  • 批准号:
    32302241
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Home helper robots: Understanding our future lives with human-like AI
家庭帮手机器人:用类人人工智能了解我们的未来生活
  • 批准号:
    FT230100021
  • 财政年份:
    2025
  • 资助金额:
    $ 299.01万
  • 项目类别:
    ARC Future Fellowships
An innovative platform using ML/AI to analyse farm data and deliver insights to improve farm performance, increasing farm profitability by 5-10%
An%20innovative%20platform%20using%20ML/AI%20to%20analysis%20farm%20data%20and%20deliver%20insights%20to%20improv%20farm%20performance,%20increasing%20farm%20profitability%20by%205-10%
  • 批准号:
    10093235
  • 财政年份:
    2024
  • 资助金额:
    $ 299.01万
  • 项目类别:
    Collaborative R&D
Priceworx Ultimate+: A world-first AI-driven material cost forecaster for construction project management.
Priceworx Ultimate:世界上第一个用于建筑项目管理的人工智能驱动的材料成本预测器。
  • 批准号:
    10099966
  • 财政年份:
    2024
  • 资助金额:
    $ 299.01万
  • 项目类别:
    Collaborative R&D
Innovation through AI
通过人工智能进行创新
  • 批准号:
    10102175
  • 财政年份:
    2024
  • 资助金额:
    $ 299.01万
  • 项目类别:
    Collaborative R&D
MediMusic: using AI for music therapy in care homes
MediMusic:在疗养院使用人工智能进行音乐治疗
  • 批准号:
    10107316
  • 财政年份:
    2024
  • 资助金额:
    $ 299.01万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了