FET:Medium: Drug discovery using quantum machine learning

FET:中:使用量子机器学习进行药物发现

基本信息

  • 批准号:
    2210963
  • 负责人:
  • 金额:
    $ 120万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Existing drug discovery pipelines take 10-15 years from initial idea to market approval and cost billions of dollars. Extensive time is attributed to the expansive search space and lack of efficient search tools, whereas the cost is primarily attributed to inferior quality drug candidates that fail in clinical trials. High-quality search tools are required to increase the variety and quality of drug candidates that enter optimization. While high-performance computing assisted by Artificial Intelligence (AI) can screen a large pool of chemical compounds quickly to narrow down candidates that possess various desirable properties, a very large fraction of potential space for candidate drugs still goes unexplored. Furthermore, it is computationally expensive and inefficient in sampling the desired probability distributions in solution space which grows exponentially with the number of molecules. Quantum AI is more expressive, i.e., it can model a target probability distribution even with a limited number of qubits and parameters to sample from the unexplored regions of the search space. However, their true potential and application in drug discovery remain unexplored. This project will fill this void by creating Quantum Machine Learning (QML) models that will employ noisy quantum computers. If successful, this project will unleash new computational capabilities in discovery applications, e.g., by selecting novel lead chemical compounds versus important target proteins to treat diseases, such as cancer, by converging multiple disciplines. The generic and extendible QML toolset will enable the use of quantum computing for other discovery applications, e.g., material discovery. This project will advance quantum computing and quantum AI by addressing the scalability issue. It will develop an integrated introduction to quantum computing and application for K-12 teachers, including a professional development workshop and curricular materials that address local and national-level standards in science and engineering education. It will also develop undergraduate coursework supported by Penn State Quantum Minor program to prepare a quantum-ready workforce. Researchers will develop DrugVAE (a quantum variational autoencoder) to search and screen ligands and QDock (a quantum docking engine) to validate the ligands and aid in screening. Various scalability, application-level parallelization and training approaches for distributed computing will also be developed. Researchers will optimize and parallelize, map, and schedule the QML workloads from DrugVAE and QDock into target quantum computers considering architectural and hardware constraints for performance, resilience and cost. The output features will be provided to the classical neural network as needed. Researchers will computationally validate QML-generated compounds against slower, traditional docking as well as experimentally determined binding affinities. The research will provide materials for workforce development and undergraduate curriculum. Various tasks will be synergized through novel techniques, such as QML-specific optimization, target-specific search and refinement of model parameters, and optimization based on validation results. This project will cover all levels of abstractions to meet the end goal of drug discovery, e.g., program/circuit design, optimization, circuit-to-architecture mapping, parallelization, and scheduling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现有的药物发现管道从最初的想法到获得市场批准需要 10 至 15 年的时间,耗资数十亿美元。大量的时间归因于广泛的搜索空间和缺乏有效的搜索工具,而成本主要归因于在临床试验中失败的劣质候选药物。需要高质量的搜索工具来增加进入优化的候选药物的种类和质量。虽然人工智能 (AI) 辅助的高性能计算可以快速筛选大量化合物,以缩小具有各种所需特性的候选药物的范围,但候选药物的很大一部分潜在空间仍未被开发。此外,在随分子数量呈指数增长的解空间中采样所需的概率分布时,计算成本昂贵且效率低下。量子人工智能更具表现力,即,即使使用有限数量的量子位和参数,它也可以对目标概率分布进行建模,以从搜索空间的未探索区域进行采样。然而,它们在药物发现中的真正潜力和应用仍有待探索。该项目将通过创建使用噪声量子计算机的量子机器学习(QML)模型来填补这一空白。如果成功,该项目将在发现应用中释放新的计算能力,例如,通过融合多个学科,选择新颖的先导化合物与重要的靶蛋白来治疗癌症等疾病。通用且可扩展的 QML 工具集将使量子计算能够用于其他发现应用,例如材料发现。该项目将通过解决可扩展性问题来推进量子计算和量子人工智能。它将为 K-12 教师开发量子计算和应用的综合介绍,包括专业发展研讨会和满足地方和国家级科学和工程教育标准的课程材料。它还将开发由宾夕法尼亚州立大学量子辅修项目支持的本科课程,以培养一支做好量子准备的劳动力队伍。研究人员将开发 DrugVAE(一种量子变分自动编码器)来搜索和筛选配体,并开发 QDock(一种量子对接引擎)来验证配体并帮助筛选。还将开发用于分布式计算的各种可扩展性、应用程序级并行化和培训方法。研究人员将考虑性能、弹性和成本的架构和硬件限制,优化和并行化、映射和调度来自 DrugVAE 和 QDock 的 QML 工作负载到目标量子计算机中。输出特征将根据需要提供给经典神经网络。研究人员将通过计算验证 QML 生成的化合物与较慢的传统对接以及实验确定的结合亲和力。该研究将为劳动力发展和本科课程提供材料。各种任务将通过新技术协同作用,例如特定于 QML 的优化、特定于目标的搜索和模型参数的细化以及基于验证结果的优化。该项目将涵盖实现药物发现最终目标的所有抽象层次,例如程序/电路设计、优化、电路到架构映射、并行化和调度。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SCANN: Side Channel Analysis of Spiking Neural Networks
SCANN:尖峰神经网络的侧通道分析
  • DOI:
    10.3390/cryptography7020017
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Nagarajan, Karthikeyan;Roy, Rupshali;Topaloglu, Rasit Onur;Kannan, Sachhidh;Ghosh, Swaroop
  • 通讯作者:
    Ghosh, Swaroop
NeuralDock: Rapid and Conformation-Agnostic Docking of Small Molecules
NeuralDock:小分子的快速且与构象无关的对接
  • DOI:
    10.3389/fmolb.2022.867241
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Sha, Congzhou M.;Wang, Jian;Dokholyan, Nikolay V.
  • 通讯作者:
    Dokholyan, Nikolay V.
Shot Optimization in Quantum Machine Learning Architectures to Accelerate Training
量子机器学习架构中的镜头优化可加速训练
  • DOI:
    10.1109/access.2023.3270419
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Phalak, Koustubh;Ghosh, Swaroop
  • 通讯作者:
    Ghosh, Swaroop
Special Session: On the Reliability of Conventional and Quantum Neural Network Hardware
特别会议:论传统和量子神经网络硬件的可靠性
  • DOI:
    10.1109/vts52500.2021.9794194
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sadi, Mehdi;He, Yi;Li, Yanjing;Alam, Mahabubul;Kundu, Satwik;Ghosh, Swaroop;Bahrami, Javad;Karimi, Naghmeh
  • 通讯作者:
    Karimi, Naghmeh
Big versus small: The impact of aggregate size in disease
大与小:聚集体大小对疾病的影响
  • DOI:
    10.1002/pro.4686
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hnath, Brianna;Chen, Jiaxing;Reynolds, Joshua;Choi, Esther;Wang, Jian;Zhang, Dongyan;Sha, Congzhou M.;Dokholyan, Nikolay V.
  • 通讯作者:
    Dokholyan, Nikolay V.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Swaroop Ghosh其他文献

Non-parametric Greedy Optimization of Parametric Quantum Circuits
参数量子电路的非参数贪婪优化
Investigating impact of bit-flip errors in control electronics on quantum computation
研究控制电子器件中位翻转错误对量子计算的影响
  • DOI:
    10.48550/arxiv.2405.05511
  • 发表时间:
    2024-05-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Subrata Das;Avimita Chatterjee;Swaroop Ghosh
  • 通讯作者:
    Swaroop Ghosh
How Secure Are Printed Circuit Boards Against Trojan Attacks?
印刷电路板抵御特洛伊木马攻击的安全性如何?
  • DOI:
    10.1109/mdat.2014.2347918
  • 发表时间:
    2015-04-01
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Swaroop Ghosh;A. Basak;S. Bhunia
  • 通讯作者:
    S. Bhunia
Qubit Sensing: A New Attack Model for Multi-programming Quantum Computing
量子位传感:多道编程量子计算的新攻击模型
Experimental Characterization, Modeling, and Analysis of Crosstalk in a Quantum Computer
量子计算机串扰的实验表征、建模和分析

Swaroop Ghosh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Swaroop Ghosh', 18)}}的其他基金

SaTC: CORE: Small: SLIQ: Securing Large-Scale Noisy-Intermediate Scale Quantum Computing
SaTC:核心:小型:SLIQ:确保大规模噪声中级量子计算的安全
  • 批准号:
    2129675
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: SLIQ: Securing Large-Scale Noisy-Intermediate Scale Quantum Computing
SaTC:核心:小型:SLIQ:确保大规模噪声中级量子计算的安全
  • 批准号:
    2129675
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
SaTC: EDU: A Curriculum for Quantum Security and Trust
SaTC:EDU:量子安全和信任课程
  • 批准号:
    2113839
  • 财政年份:
    2021
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator - Track C: SQAI: Scalable Quantum Artificial Intelligence for Discovery
NSF 融合加速器 - 轨道 C:SQAI:用于发现的可扩展量子人工智能
  • 批准号:
    2040667
  • 财政年份:
    2020
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
SaTC: STARSS: Small: Assuring Security and Privacy of Emerging Non-Volatile Memories
SaTC:STARSS:小型:确保新兴非易失性存储器的安全性和隐私
  • 批准号:
    1814710
  • 财政年份:
    2018
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
SaTC: EDU: CyCAD: A Virtual Platform for Cybersecurity Curriculum on Analog Design
SaTC:EDU:CyCAD:模拟设计网络安全课程虚拟平台
  • 批准号:
    1821766
  • 财政年份:
    2018
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
SHF:Small: Collaborative Research: Exploring 3-Dimensional Integration Strategies of STTRAM
SHF:Small:协作研究:探索 STTRAM 的 3 维集成策略
  • 批准号:
    1718474
  • 财政年份:
    2017
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
SaTC: EDU: Advancing Cybersecurity Education through Self-Learning Cybersecurity Training Kit
SaTC:EDU:通过自学网络安全培训套件推进网络安全教育
  • 批准号:
    1723687
  • 财政年份:
    2017
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
SaTC: Collaborative: Exploiting Spintronics for Security, Trust and Authentication
SaTC:协作:利用自旋电子学实现安全、信任和身份验证
  • 批准号:
    1722557
  • 财政年份:
    2016
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
SaTC: Collaborative: Exploiting Spintronics for Security, Trust and Authentication
SaTC:协作:利用自旋电子学实现安全、信任和身份验证
  • 批准号:
    1441757
  • 财政年份:
    2014
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant

相似国自然基金

基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Defining the cell-type specific role of histone acetyltransferase KAT2a in nucleus accumbens D1 medium spiny neurons as a driver of cocaine use disorder
定义组蛋白乙酰转移酶 KAT2a 在伏隔核 D1 中型多棘神经元中作为可卡因使用障碍驱动因素的细胞类型特异性作用
  • 批准号:
    10679238
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
Mechanisms of macrophage death co-dependent on M. tuberculosis and IFN-a,b receptor
结核分枝杆菌和 IFN-a、b 受体共同依赖的巨噬细胞死亡机制
  • 批准号:
    10725738
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
Contributions of KCNQ2/3 channels to medium spiny neuron excitability and cocaine reward
KCNQ2/3 通道对中棘神经元兴奋性和可卡因奖励的贡献
  • 批准号:
    10678521
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
Treatment of Alzheimer’s Disease using Ultrasound-Targeted Microbubble Cavitation-Mediated Blood Brain Barrier Opening to Facilitate Drug Delivery to the Brain
使用超声靶向微泡空化介导的血脑屏障打开促进药物输送到大脑来治疗阿尔茨海默病
  • 批准号:
    10710373
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
Optimizing medium-chain lipids for the treatment of long-chain fatty acid oxidation disorders
优化中链脂质用于治疗长链脂肪酸氧化紊乱
  • 批准号:
    10372915
  • 财政年份:
    2021
  • 资助金额:
    $ 120万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了