Collaborative Research: Experiments and Modeling of the Fluid Flow of Beating Eukaryotic Flagella
合作研究:真核鞭毛跳动流体流动的实验和建模
基本信息
- 批准号:2242095
- 负责人:
- 金额:$ 38.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Flagella and cilia are thin hair-like cellular structures which play an essential role in many basic life processes. By beating rhythmically, flagella and cilia move fluid in the local environment of cells. This biological function enables pulmonary mucus clearance in airways and the transport of ovums from the ovary to the uterus for example. Malfunction of flagella and cilia can lead to a group of serious human disorders, ciliopathies, which cause a heavy economic and disease burden on society. However, despite the ubiquity and importance of flagella and cilia, fundamental biomechanics underlying the fluid transport of beating flagella and cilia are still poorly understood. Particularly, the detailed flow field induced by beating flagella and cilia remains unresolved. Combining state-of-the-art microscopy techniques with data-driven machine learning, the research team aims to address this difficult biomechanical problem. This research will investigate the flow field of healthy flagella as well as those of mutant flagella associated with ciliopathies using synergistic experimental and numerical modeling efforts. A potential solution to remedy the flow deficiency of malfunction flagella will be researched. In addition to the training and research opportunities for undergraduate and graduate students, the project will produce appealing scientific videos and demonstrations to enhance the undergraduate curriculum and enrich outreach activities at the local communities of the two principal investigators. As a generic model for the morphology and dynamics of flagella and cilia, green algae Chlamydomonas reinhardtii, will be studied in this research program. Optical microscopy will be used to track the three-dimensional (3D) fluid flow around the beating flagella of a single alga at micron scales with sub-millisecond temporal resolutions. Both wild-type and mutant algae of different swimming modes will be investigated. The mechanical efficiency of flagellar dynamics will be analyzed based on the 3D flow field. Moreover, using the experimental flow field as a basis of reference and taking advantage of modern machine-learning algorithms, the team plans to develop a numerical model of maximal simplicity that can quantitatively capture the algal flow. The model will facilitate the study of the optimization and synchronization of flagellar dynamics and the collective dynamics of algal suspensions. Through the collaborative experimental and modeling efforts, the missing link between the flagellar dynamics and the resulting microscopic fluid flow will be revealed by this research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
鞭毛和纤毛是薄的头发样细胞结构,在许多基本生命过程中起着至关重要的作用。通过节奏地跳动,鞭毛和纤毛在细胞的局部环境中移动流体。这种生物学功能可以使气道中的肺粘液清除以及卵巢从卵巢传输到子宫。鞭毛和纤毛的故障会导致一群严重的人类疾病,纤毛病,这给社会带来了沉重的经济和疾病负担。但是,尽管鞭毛和纤毛的无处不在和重要性,但跳动鞭毛和纤毛的液体运输的基本生物力学仍然很少了解。特别是,击败鞭毛和纤毛诱发的详细流场仍未解决。研究小组将最新的显微镜技术与数据驱动的机器学习结合在一起,旨在解决这一困难的生物力学问题。这项研究将研究健康的鞭毛的流场以及使用协同实验和数值建模工作的纤毛病变的突变鞭毛鞭毛的流场。将研究纠正故障鞭毛缺乏流量的潜在解决方案。除了对本科和研究生的培训和研究机会外,该项目还将制作有吸引力的科学视频和示范,以增强本科课程,并在两位主要研究人员的当地社区中进行宣传活动。 作为鞭毛和纤毛的形态和动力学的通用模型,将在该研究计划中研究绿藻Chlamydomonas renhardtii。光学显微镜将用于跟踪单个藻类在微米尺度上的三维(3D)流体流动,并具有子毫米尺度的微米尺度。将研究不同游泳模式的野生型和突变藻。将根据3D流场分析鞭毛动力学的机械效率。此外,使用实验流场作为参考和利用现代机器学习算法的基础,团队计划开发一种最大简单的数值模型,可以定量捕获藻类流量。该模型将促进鞭毛动力学的优化和同步研究和藻类悬浮液的集体动力学。通过协作实验和建模工作,这项研究将揭示鞭毛动力学与由此产生的微观流体流之间的缺失联系。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估标准通过评估来获得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiang Cheng其他文献
OPTIMAL MULTI-SENSOR MULTI-VEHICLE (MSMV) LOCALIZATION AND MOBILITY TRACKING
最佳多传感器多车辆 (MSMV) 定位和移动跟踪
- DOI:
10.1109/globalsip.2018.8646626 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Pengtao Yang;Dongliang Duan;Chen Chen;Xiang Cheng;Liuqing Yang - 通讯作者:
Liuqing Yang
Preparation and characterization of majority solid waste based eco-unburned permeable bricks
多数固废基生态免烧透水砖的制备及表征
- DOI:
10.1016/j.conbuildmat.2020.120400 - 发表时间:
2020-10 - 期刊:
- 影响因子:7.4
- 作者:
Lei Liu;Xiang Cheng;Xiwang Miao;Yonglin Shi;Meixia Zhang;Min Guo;Fangqin Cheng;Mei Zhang - 通讯作者:
Mei Zhang
An Energy-Efficient and Swarm Intelligence-Based Routing Protocol for Next-Generation Sensor Networks
适用于下一代传感器网络的节能且基于群体智能的路由协议
- DOI:
10.1109/mis.2014.79 - 发表时间:
2014-09 - 期刊:
- 影响因子:6.4
- 作者:
Changle Li;Yulong Duan;Jin Yang;Xiang Cheng - 通讯作者:
Xiang Cheng
Bond-breaking induced Lifshitz transition in robust Dirac semimetal VAl3
鲁棒狄拉克半金属 VAl3 中的键断裂诱导 Lifshitz 转变
- DOI:
10.1073/pnas.1917697117 - 发表时间:
2020 - 期刊:
- 影响因子:11.1
- 作者:
Liu Yiyuan;Liu Yu-Fei;Gui Xin;Xiang Cheng;Zhou Hui-Bin;Hsu Chuang-Han;Lin Hsin;Chang Tay-Rong;Xie Weiwei;Jia Shuang - 通讯作者:
Jia Shuang
A fractal analysis of the crack extension paths in a Si3N4 ceramic tool composite
Si3N4 陶瓷刀具复合材料中裂纹扩展路径的分形分析
- DOI:
10.1016/j.ijrmhm.2015.03.013 - 发表时间:
2015-07 - 期刊:
- 影响因子:0
- 作者:
Guangming Zheng;Jun Zhao;Li Li;Xiang Cheng;Mi - 通讯作者:
Mi
Xiang Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiang Cheng', 18)}}的其他基金
2022 GRC on Granular Matter: Particulate Systems Across Scales: From Colloidal Science to Geophysical Flows
2022 GRC 颗粒物质:跨尺度的颗粒系统:从胶体科学到地球物理流
- 批准号:
2203110 - 财政年份:2022
- 资助金额:
$ 38.23万 - 项目类别:
Standard Grant
Collaborative Proposal: Impact of a colloidal suspension droplet: suspension flows at extreme shear rates
合作提案:胶体悬浮液滴的影响:悬浮液在极端剪切速率下流动
- 批准号:
2002817 - 财政年份:2020
- 资助金额:
$ 38.23万 - 项目类别:
Continuing Grant
Experimental study of the conformation and dynamics of active colloidal polymers
活性胶体聚合物构象与动力学的实验研究
- 批准号:
2028652 - 财政年份:2020
- 资助金额:
$ 38.23万 - 项目类别:
Standard Grant
A study of the dynamics of drop impact: Impact forces, pressure and shear stress distributions
跌落冲击动力学研究:冲击力、压力和剪应力分布
- 批准号:
2017071 - 财政年份:2020
- 资助金额:
$ 38.23万 - 项目类别:
Standard Grant
2018 Gordon Research Conference on Granular Matter: The Interdisciplinary Nature of Particulate Systems
2018年戈登颗粒物质研究会议:颗粒系统的跨学科性质
- 批准号:
1829120 - 财政年份:2018
- 资助金额:
$ 38.23万 - 项目类别:
Standard Grant
Disentangling the dynamics of shear banding in entangled polymer solutions
解开缠结聚合物溶液中剪切带的动力学
- 批准号:
1700771 - 财政年份:2017
- 资助金额:
$ 38.23万 - 项目类别:
Standard Grant
Producing Conductive Polymer Composites by Placing Graphene at the Interfaces of the Blended Polymers
通过将石墨烯放置在共混聚合物的界面上来生产导电聚合物复合材料
- 批准号:
1661666 - 财政年份:2017
- 资助金额:
$ 38.23万 - 项目类别:
Standard Grant
An experimental study of rheology and microscopic dynamics of sheared active fluids
剪切活性流体的流变学和微观动力学实验研究
- 批准号:
1702352 - 财政年份:2017
- 资助金额:
$ 38.23万 - 项目类别:
Standard Grant
CAREER: Liquid-drop impacts on granular surfaces and the universality in granular impact cratering
职业:液滴对颗粒表面的撞击以及颗粒撞击坑的普遍性
- 批准号:
1452180 - 财政年份:2015
- 资助金额:
$ 38.23万 - 项目类别:
Continuing Grant
相似国自然基金
多机械臂协作系统动力学层级解析建模与协调柔顺控制理论及实验研究
- 批准号:52175083
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
基于社会偏好和有限理性的团队协作激励理论及实验研究
- 批准号:72073057
- 批准年份:2020
- 资助金额:48 万元
- 项目类别:面上项目
受生物启发的多水下机器人环境自适应集群协作控制方法及实验研究
- 批准号:61973007
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
数据驱动的复杂供应链网络多主体协作的计算实验及决策优化方法研究
- 批准号:71771195
- 批准年份:2017
- 资助金额:47.0 万元
- 项目类别:面上项目
网络组织结构、治理机制对协作创新的影响研究
- 批准号:70972085
- 批准年份:2009
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Standard Grant
Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
- 批准号:
2419423 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331295 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Standard Grant
Collaborative Research: Time-Sharing Experiments for the Social Sciences (TESS): Proposal for Renewed Support, 2020-2023
合作研究:社会科学分时实验(TESS):2020-2023 年更新支持提案
- 批准号:
2424057 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Continuing Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
- 批准号:
2336135 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Standard Grant