Disentangling the dynamics of shear banding in entangled polymer solutions

解开缠结聚合物溶液中剪切带的动力学

基本信息

  • 批准号:
    1700771
  • 负责人:
  • 金额:
    $ 35.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Plastics are ubiquitous to modern society, used in food packing, electronic devices, transportation, sports equipment, and medical devices. The precursor to all formed plastics is a polymer fluid. Polymer fluids are a unique type of fluid, as the chain-like polymer molecules act like springs, and within a collection of fluid molecules, the polymer springs become entangled. Unlike water and many other fluids, this complex fluid does not respond to the forces of stress and shear in a manner that is proportional to the applied force. This non-proportional response is classified as Non-Newtonian. Non-Newtonian fluids have not been adequately described by general engineering models of fluid flow. Without general models, prediction of flow in industrial processing is limited to trial-and-error. Under some circumstances, such as slow flow or low concentration, many of these complexities can be ignored. However, these are not the most industrially relevant conditions, where high concentration and fast flow are prevalent. This project supports a fundamental experimental study on the fast flow of concentrated polymer fluids, and uses state-of-the-art imaging techniques to directly image single polymer molecules to reveal the microscopic dynamics of complex fluid flow. The challenge in understanding the dynamics of concentrated polymer fluids is the nonlinear viscoelasticity of entangled polymer solutions, particularly the formation of shear-banding in concentrated polymer solutions at high shear rates. These phenomenon are difficult to probe experimentally. This research project combines high-speed confocal microscopy with a custom shear cell to investigate the origin of shear-banding flows of a model system, namely, concentrated DNA solutions. The applications of these unique experimental tools to the problem will resolve a controversy regarding on shear-banding in polymer fluids. The phase diagram of the shear-induced dynamics of concentrated DNA solutions is being mapped. The project aims to establish a direct link between the microscopic dynamics of DNA molecules and the macroscopic flow behavior of polymer fluids. The project is elucidating the dynamics of single polymer molecules in concentrated solutions under fast shear and experimentally validating competing theories on shear banding of polymer fluids. These results are uncovering the missing theoretical understanding of concentrated polymer fluids under fast flows and, ultimately, practical engineering models for polymer fluids under the most industrially relevant conditions. Increased control and prediction of polymer flow will increase throughput and efficiency, and therefore greatly impact the U.S. manufacturing sector. This research project also involves K-12 outreach programs with local high school students, especially those underrepresented in science and engineering.
塑料对现代社会无处不在,用于食品包装,电子设备,运输,运动器材和医疗设备。 所有形成的塑料的前体是聚合物流体。 聚合物流体是一种独特的流体类型,因为链状聚合物分子像弹簧一样起作用,并且在流体分子的集合中,聚合物弹簧被纠缠在一起。 与水和许多其他流体不同,这种复杂的流体不会以与施加力成正比的方式对压力和剪切力的反应。这种非比例响应被归类为非牛顿。 流体流的通用工程模型尚未充分描述非牛顿流体。 没有一般模型,工业处理中流量的预测仅限于反复试验。在某些情况下,例如流量缓慢或浓度较低,许多这些复杂性都可以忽略。但是,这些不是最相关的条件,在高浓度和快速流动的情况下。该项目支持对浓缩聚合物流体快速流动的基本实验研究,并使用最先进的成像技术直接成像单聚合物分子来揭示复杂流体流的微观动力学。理解浓缩聚合物液的动力学的挑战是纠缠聚合物溶液的非线性粘弹性,尤其是以高剪切速率在浓缩聚合物溶液中形成剪切带的形成。这些现象很难实验探测。该研究项目将高速共聚焦显微镜与自定义剪切电池结合起来,以研究模型系统的剪切带的起源,即浓缩DNA溶液。这些独特的实验工具在问题上的应用将解决有关聚合物液中剪切的争议。剪切诱导的浓缩DNA溶液动力学的相图正在映射。该项目旨在建立DNA分子的显微镜动力学与聚合物流体的宏观流动行为之间的直接联系。该项目正在阐明在快速剪切下浓缩溶液中单个聚合物分子的动力学,并实验验证了聚合物液的剪切条带的竞争理论。这些结果揭示了在快速流动下对集中聚合物流体的理论理解,并最终在最相关的条件下为聚合物流体提供了实用的工程模型。对聚合物流的控制和预测的增加将提高吞吐量和效率,因此极大地影响了美国制造业。该研究项目还涉及与当地高中生的K-12外展计划,尤其是科学和工程领域的人数不足的学生。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shear-banding and superdiffusivity in entangled polymer solutions
缠结聚合物溶液中的剪切带和超扩散率
  • DOI:
    10.1103/physreve.96.062503
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Shin, Seunghwan;Dorfman, Kevin D.;Cheng, Xiang
  • 通讯作者:
    Cheng, Xiang
Dynamics of DNA-Bridged Dumbbells in Concentrated, Shear-Banding Polymer Solutions
DNA 桥哑铃在浓缩剪切带聚合物溶液中的动力学
  • DOI:
    10.1021/acs.macromol.0c02890
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Shin, Seunghwan;Kou, Yangming;Dorfman, Kevin D.;Cheng, Xiang
  • 通讯作者:
    Cheng, Xiang
Effect of edge disturbance on shear banding in polymeric solutions
边缘扰动对聚合物溶液中剪切带的影响
  • DOI:
    10.1122/1.5042108
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Shin, Seunghwan;Dorfman, Kevin D.;Cheng, Xiang
  • 通讯作者:
    Cheng, Xiang
共 3 条
  • 1
前往

Xiang Cheng其他文献

OPTIMAL MULTI-SENSOR MULTI-VEHICLE (MSMV) LOCALIZATION AND MOBILITY TRACKING
最佳多传感器多车辆 (MSMV) 定位和移动跟踪
Preparation and characterization of majority solid waste based eco-unburned permeable bricks
多数固废基生态免烧透水砖的制备及表征
  • DOI:
    10.1016/j.conbuildmat.2020.120400
    10.1016/j.conbuildmat.2020.120400
  • 发表时间:
    2020-10
    2020-10
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Lei Liu;Xiang Cheng;Xiwang Miao;Yonglin Shi;Meixia Zhang;Min Guo;Fangqin Cheng;Mei Zhang
    Lei Liu;Xiang Cheng;Xiwang Miao;Yonglin Shi;Meixia Zhang;Min Guo;Fangqin Cheng;Mei Zhang
  • 通讯作者:
    Mei Zhang
    Mei Zhang
An Energy-Efficient and Swarm Intelligence-Based Routing Protocol for Next-Generation Sensor Networks
适用于下一代传感器网络的节能且基于群体智能的路由协议
  • DOI:
    10.1109/mis.2014.79
    10.1109/mis.2014.79
  • 发表时间:
    2014-09
    2014-09
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Changle Li;Yulong Duan;Jin Yang;Xiang Cheng
    Changle Li;Yulong Duan;Jin Yang;Xiang Cheng
  • 通讯作者:
    Xiang Cheng
    Xiang Cheng
Bond-breaking induced Lifshitz transition in robust Dirac semimetal VAl3
鲁棒狄拉克半金属 VAl3 中的键断裂诱导 Lifshitz 转变
A fractal analysis of the crack extension paths in a Si3N4 ceramic tool composite
Si3N4 陶瓷刀具复合材料中裂纹扩展路径的分形分析
共 184 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 37
前往

Xiang Cheng的其他基金

Collaborative Research: Experiments and Modeling of the Fluid Flow of Beating Eukaryotic Flagella
合作研究:真核鞭毛跳动流体流动的实验和建模
  • 批准号:
    2242095
    2242095
  • 财政年份:
    2023
  • 资助金额:
    $ 35.74万
    $ 35.74万
  • 项目类别:
    Standard Grant
    Standard Grant
2022 GRC on Granular Matter: Particulate Systems Across Scales: From Colloidal Science to Geophysical Flows
2022 GRC 颗粒物质:跨尺度的颗粒系统:从胶体科学到地球物理流
  • 批准号:
    2203110
    2203110
  • 财政年份:
    2022
  • 资助金额:
    $ 35.74万
    $ 35.74万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Proposal: Impact of a colloidal suspension droplet: suspension flows at extreme shear rates
合作提案:胶体悬浮液滴的影响:悬浮液在极端剪切速率下流动
  • 批准号:
    2002817
    2002817
  • 财政年份:
    2020
  • 资助金额:
    $ 35.74万
    $ 35.74万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Experimental study of the conformation and dynamics of active colloidal polymers
活性胶体聚合物构象与动力学的实验研究
  • 批准号:
    2028652
    2028652
  • 财政年份:
    2020
  • 资助金额:
    $ 35.74万
    $ 35.74万
  • 项目类别:
    Standard Grant
    Standard Grant
A study of the dynamics of drop impact: Impact forces, pressure and shear stress distributions
跌落冲击动力学研究:冲击力、压力和剪应力分布
  • 批准号:
    2017071
    2017071
  • 财政年份:
    2020
  • 资助金额:
    $ 35.74万
    $ 35.74万
  • 项目类别:
    Standard Grant
    Standard Grant
2018 Gordon Research Conference on Granular Matter: The Interdisciplinary Nature of Particulate Systems
2018年戈登颗粒物质研究会议:颗粒系统的跨学科性质
  • 批准号:
    1829120
    1829120
  • 财政年份:
    2018
  • 资助金额:
    $ 35.74万
    $ 35.74万
  • 项目类别:
    Standard Grant
    Standard Grant
Producing Conductive Polymer Composites by Placing Graphene at the Interfaces of the Blended Polymers
通过将石墨烯放置在共混聚合物的界面上来生产导电聚合物复合材料
  • 批准号:
    1661666
    1661666
  • 财政年份:
    2017
  • 资助金额:
    $ 35.74万
    $ 35.74万
  • 项目类别:
    Standard Grant
    Standard Grant
An experimental study of rheology and microscopic dynamics of sheared active fluids
剪切活性流体的流变学和微观动力学实验研究
  • 批准号:
    1702352
    1702352
  • 财政年份:
    2017
  • 资助金额:
    $ 35.74万
    $ 35.74万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Liquid-drop impacts on granular surfaces and the universality in granular impact cratering
职业:液滴对颗粒表面的撞击以及颗粒撞击坑的普遍性
  • 批准号:
    1452180
    1452180
  • 财政年份:
    2015
  • 资助金额:
    $ 35.74万
    $ 35.74万
  • 项目类别:
    Continuing Grant
    Continuing Grant

相似国自然基金

神经元模型中混合模式振荡诱导机制的动力学研究
  • 批准号:
    12302069
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
准一维铬砷基超导材料电子关联动力学性质的第一性原理研究
  • 批准号:
    12304175
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
柔性钙钛矿室内光伏器件中“微-宏观”应力调谐及其载流子复合动力学研究
  • 批准号:
    62305261
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
摇摆桥梁三维动力学行为及地震响应规律研究
  • 批准号:
    52308494
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
桃果实采后冷害质地劣变的细胞壁果胶动力学机制研究
  • 批准号:
    32302155
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
  • 批准号:
    2347497
    2347497
  • 财政年份:
    2024
  • 资助金额:
    $ 35.74万
    $ 35.74万
  • 项目类别:
    Standard Grant
    Standard Grant
Constraining ocean-mantle dynamics by improving shear-wave splitting with ocean bottom seismometers
通过海底地震仪改进剪切波分裂来约束洋幔动力学
  • 批准号:
    2303839
    2303839
  • 财政年份:
    2023
  • 资助金额:
    $ 35.74万
    $ 35.74万
  • 项目类别:
    Standard Grant
    Standard Grant
Prediction of Instantaneous wall shear stress distribution through the fusion of Experimental/Computational/Data-driven Fluid Dynamics
通过融合实验/计算/数据驱动的流体动力学来预测瞬时壁剪应力分布
  • 批准号:
    22K18302
    22K18302
  • 财政年份:
    2022
  • 资助金额:
    $ 35.74万
    $ 35.74万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
    Grant-in-Aid for Challenging Research (Pioneering)
Development of perioperative management in adult patients with congenital heart disease using fluid dynamics analysis and proteomics
利用流体动力学分析和蛋白质组学开展成人先天性心脏病围手术期管理
  • 批准号:
    22K16615
    22K16615
  • 财政年份:
    2022
  • 资助金额:
    $ 35.74万
    $ 35.74万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
    Grant-in-Aid for Early-Career Scientists
Allosteric adhesins of enterobacterial pathogens
肠杆菌病原体的变构粘附素
  • 批准号:
    10512013
    10512013
  • 财政年份:
    2022
  • 资助金额:
    $ 35.74万
    $ 35.74万
  • 项目类别: