CAREER: Stretchable Light-Emitting Polymers with Thermally Activated Delayed Fluorescence

职业:具有热激活延迟荧光的可拉伸发光聚合物

基本信息

  • 批准号:
    2239618
  • 负责人:
  • 金额:
    $ 62.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-01 至 2028-01-31
  • 项目状态:
    未结题

项目摘要

PART 1: NON-TECHNICAL SUMMARY For human-integrated wearable and implantable electronics, light-emitting devices (such as organic light-emitting diodes, OLEDs) play important roles for applications such as displays, light-based vital-sign monitoring and disease therapy, bio-imaging, and optical bio-stimulation of cell activities. For these devices to have conformable skin/tissue contacts and long-term compatibility, one of the key requirements is to have tissue-like mechanical stretchability. However, all the high-performance light-emitting inorganic and organic materials available so far are relatively rigid and brittle. This research will develop and study a new class of polymers that combines high-efficiency light-emitting mechanisms with rubber-like mechanical properties. These new polymers will be created through both the chemical synthesis of new structures and the physical engineering of existing chemical structures. Through fundamental studies on the influence of different rubbery designs on light-emitting performance, this research will provide design principles for this new class of polymers for achieving both high efficiency in light-emitting devices and high stretchability. Enabled by this research, the stretchable light-emitting technology could impact the emerging areas of precision healthcare, human-machine interactions, and artificial intelligence. This research will enrich the education and training for graduate and undergraduate students, as well as promote the participation of underrepresented minority (URM) students in STEM research through partnerships with high schools and the Museum of Science and Industry in Chicago's South Side. PART 2: TECHNICAL SUMMARY Stretchable light-emitting devices represent an important component in the emerging area of human-integrated electronics that are desired to achieve skin/tissue-like mechanical properties and biocompatibility. However, for electroluminescent properties, the realization and understanding of the impacts of incorporating mechanically stretchable molecular designs on photophysical behaviors remain rare. This research aims to create a set of material design principles for integrating strain-dissipation mechanisms into a state-of-the-art category of light-emitting materials, that is "thermally activated delayed fluorescence" (TADF) polymers, so as to combine skin-like stretchability with high electroluminescence efficiencies. Specifically, this research will explore and study four general approaches for imparting stretchability onto TADF polymers: 1) chemically modulating the flexibility of polymer backbones; 2) chemically building flexibility onto polymer side chains; 3) physically loosening the interchain packing and interaction; 4) imparting stretchability onto “host” polymers for TADF emitters. Enabled by the new polymer designs from these four approaches, this research will carry out fundamental studies on the structure-property relationships that combine thermodynamic, mechanical, and electroluminescent aspects for TADF polymers by combining multi-aspect experimental characterizations and theoretical simulations. This research will also develop the future workforce at both undergraduate and graduate levels, with special relevance to for the emerging wearable and implantable electronics industry. The PI will also develop a new program for bringing STEM research to high school students in Chicago's South Side which have a high proportion of underrepresented minorities, as well as the development of scientific exhibits and public lectures for the “Museum of Science and Industry, Chicago”.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第 1 部分:非技术摘要 对于人体集成的可穿戴和植入式电子产品,发光器件(例如有机发光二极管、OLED)在显示器、基于光的生命体征监测和疾病治疗等应用中发挥着重要作用、生物成像和细胞活动的光学生物刺激对于这些设备来说,要具有舒适的皮肤/组织接触和长期兼容性,关键要求之一是具有类似组织的机械性能。然而,迄今为止所有可用的高性能发光无机和有机材料都相对刚性和脆性,这项研究将开发和研究一种将高效发光机制与橡胶类机械相结合的新型聚合物。这些新聚合物将通过新结构的化学合成和现有化学结构的物理工程来创建,通过对不同橡胶设计对发光性能的影响的基础研究,这项研究将为这种新的设计原理提供依据。聚合物类别通过这项研究实现发光器件的高效率和高可拉伸性,可拉伸发光技术可能会影响精准医疗、人机交互和人工智能等新兴领域。为研究生和本科生提供服务,并通过与高中和芝加哥南区科学与工业博物馆的合作,促进代表性不足的少数族裔 (URM) 学生参与 STEM 研究。第 2 部分:技术摘要。可拉伸发光器件是人体集成电子学新兴领域的重要组成部分,人们希望能够实现类似皮肤/组织的机械性能和生物相容性,然而,对于电致发光性能,需要认识和理解结合的影响。关于光物理行为的机械可拉伸分子设计仍然很少见,这项研究旨在创建一套材料设计原理,将应变耗散机制集成到最先进的发光材料类别中,即“热激活延迟”。具体而言,本研究将探索和研究赋予 TADF 聚合物可拉伸性的四种通用方法:1)通过化学方式调节聚合物主链的柔性;2)通过化学方式在聚合物侧链上构建柔性;3)通过物理方式松弛链间堆积和相互作用;4)为 TADF 发射体的“主体”聚合物赋予拉伸性。通过这四种方法的新聚合物设计,本研究将通过结合多方面的实验表征和理论模拟,对 TADF 聚合物的热力学、机械和电致发光方面的结构-性能关系进行基础研究。 PI 还将开发一项新计划,将 STEM 研究带给芝加哥南区的高中生,该地区的高中生比例很高。代表性不足的少数族裔,以及为“芝加哥科学与工业博物馆”开发科学展览和公共讲座。该奖项是 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence
  • DOI:
    10.1038/s41563-023-01529-w
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    41.2
  • 作者:
    Wei Liu;Cheng Zhang;Riccardo Alessandri;B. Diroll;Yang Li;Heyi Liang;Xiaochun Fan;Kai Wang;Himchan Cho;Youdi Liu;Yahao Dai;Qichao Su;Nan Li;Songsong Li;S. Wai;Qiang Li;Shiyang Shao;Lixiang Wang;Jie Xu;Xiaohong Zhang;D. Talapin;J. D. de Pablo;Sihong Wang
  • 通讯作者:
    Wei Liu;Cheng Zhang;Riccardo Alessandri;B. Diroll;Yang Li;Heyi Liang;Xiaochun Fan;Kai Wang;Himchan Cho;Youdi Liu;Yahao Dai;Qichao Su;Nan Li;Songsong Li;S. Wai;Qiang Li;Shiyang Shao;Lixiang Wang;Jie Xu;Xiaohong Zhang;D. Talapin;J. D. de Pablo;Sihong Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sihong Wang其他文献

Unravelling the Influence of Side-Chain Symmetry on Device Performance: Insights from Isoindigo-Based Polymers in Thin-Film Transistors
揭示侧链对称性对器件性能的影响:来自薄膜晶体管中异靛蓝聚合物的见解
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anita Hu;Audithya Nyayachavadi;Maximilian Weires;Garima Garg;Sihong Wang;S. Rondeau‐Gagné
  • 通讯作者:
    S. Rondeau‐Gagné
Inhibition of leptinleptinr-kisspeptinkiss1r signaling pathway promotes follicular development in polycystic ovarian rats
抑制leptinleptinr-kisspeptinkiss1r信号通路促进多囊卵巢大鼠卵泡发育
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lingli Jiang;Ying Wang;Qinxia Pang;Lei Peng;Sihong Wang;Zhou Liu
  • 通讯作者:
    Zhou Liu
Endometriumhyperplasie: Endometriumdicke sagt Karzinomrisiko voraus
子宫内膜增生症:Endometriumdicke sagt Karzinomrisiko voraus
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianfa Wu;Sihong Wang;Li Zhang;Suqin Wu;Zhou Liu
  • 通讯作者:
    Zhou Liu
Heat Shock Protein 70 Expression Kinetics
热休克蛋白 70 表达动力学
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sihong Wang;K. Diller;S. Aggarwal
  • 通讯作者:
    S. Aggarwal
Silver decorated hydroxides electrocatalysts for efficient oxygen evolution reaction
用于高效析氧反应的银装饰氢氧化物电催化剂
  • DOI:
    10.1016/j.cej.2022.136168
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Lingling Wu;Junjie Zhang;Sihong Wang;Qu Jiang;Ruohan Feng;Shenghong Ju;Wang Zhang;Fang Song
  • 通讯作者:
    Fang Song

Sihong Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sihong Wang', 18)}}的其他基金

Immune-compatible Designs of Electronic Polymers for Implantable Devices with Suppressed Foreign-Body Responses
用于抑制异物反应的可植入设备的电子聚合物的免疫兼容设计
  • 批准号:
    2105367
  • 财政年份:
    2021
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
I-Corps: 3D Microfluidic Cell Arrays for high throughput drug screening in tumor/tissue microenvironment
I-Corps:3D 微流控细胞阵列,用于肿瘤/组织微环境中的高通量药物筛选
  • 批准号:
    1343051
  • 财政年份:
    2013
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
CAREER: Microfluidic 3D Apoptosis Cell Arrays
职业:微流控 3D 凋亡细胞阵列
  • 批准号:
    1055608
  • 财政年份:
    2011
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant

相似国自然基金

可伸缩深度学习的视频极限压缩编码:理论与技术
  • 批准号:
    62371288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于滑移锁解的可伸缩柔体机械臂变刚度机理及控制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
支持Serverless架构的高可伸缩性云原生图处理技术
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
泛在终端情境自适应的深度模型动态可伸缩方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
语义可伸缩图像编码理论及方法研究
  • 批准号:
    62171429
  • 批准年份:
    2021
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目

相似海外基金

Skin-like, stretchable, and wearable sensors for monitoring QT interval and hemodynamic variables in Atrial Fibrillation
用于监测房颤 QT 间期和血流动力学变量的类肤、可拉伸和可穿戴传感器
  • 批准号:
    10490960
  • 财政年份:
    2021
  • 资助金额:
    $ 62.5万
  • 项目类别:
3D Functional Photoacoustic Imaging of Human Brain with a Stretchable Ultrasound Matrix Array
使用可拉伸超声矩阵阵列对人脑进行 3D 功能光声成像
  • 批准号:
    10252441
  • 财政年份:
    2021
  • 资助金额:
    $ 62.5万
  • 项目类别:
Skin-like, stretchable, and wearable sensors for monitoring QT interval and hemodynamic variables in Atrial Fibrillation
用于监测房颤 QT 间期和血流动力学变量的类肤、可拉伸和可穿戴传感器
  • 批准号:
    10580853
  • 财政年份:
    2021
  • 资助金额:
    $ 62.5万
  • 项目类别:
Wavelength Tunable Laser by Stretchable Electrolyte-based Light-emitting Device
基于可拉伸电解质的发光器件的波长可调谐激光器
  • 批准号:
    19J14801
  • 财政年份:
    2019
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Stretchable photodetector fabricated by wet-process and its application toward imaging system
湿法制备的可拉伸光电探测器及其在成像系统中的应用
  • 批准号:
    19H02199
  • 财政年份:
    2019
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了