CAREER: Ensuring Privacy, Inclusiveness, and Policy Compliance in the Era of Voice Personal Assistants
职业:确保语音个人助理时代的隐私、包容性和政策合规性
基本信息
- 批准号:2239605
- 负责人:
- 金额:$ 50.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Voice personal assistants such as Amazon Alexa and Google Assistant are rapidly gaining in both domestic and business popularity. Despite many convenient features they provide, concerns have been raised about the security and privacy, and content safety related risks to end users they also pose. During the interaction with voice assistants, users expect the voice assistants to fulfill their requests without compromising the privacy or being exposed to unsafe content, and without experiencing racial or gender disparities in terms of the automated speech recognition. The project’s novelties are new techniques and mechanisms to ensure privacy, inclusiveness, and policy compliance in voice assistant systems. The project's broader significance and importance include 1) increasing general awareness of cybersecurity in the K-12 community through various outreach and educational activities; 2) training the next generation of cybersecurity researchers especially underrepresented and minorities; and 3) strengthening cybersecurity education by developing new course materials and hands-on labs.This project first develops a voice-based privacy notice mechanism to enable users (in particular, visually impaired users) to make informed privacy decisions through the voice channel. It creates a new paradigm for accessible and inclusive privacy notification. This project then proposes a machine learning-based dynamic analysis framework, which allows a systematic evaluation of policy compliance and social biases in voice assistant systems. It can be used by users to check for any privacy or content safety violations in voice applications, and can potentially aid government agencies to perform a large-scale investigation into the policy compliance practices of existing voice applications in the Amazon Alexa and Google Assistant platforms. Finally, this project develops static analysis techniques to assist developers in producing policy-compliant voice applications at the development phase. This project also integrates a comprehensive education and outreach plan with the proposed research to train the next generation of cybersecurity researchers in an interdisciplinary environment, and to attract more students from underrepresented groups into the cybersecurity field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Amazon Alexa和Google Assistant等语音个人助理在国内和企业中都迅速获得。尽管他们提供了许多方便的功能,但人们对安全性和隐私以及对最终用户也提出的风险提出了担忧。在与语音助手的互动过程中,用户期望语音助手在不损害隐私或暴露于不安全内容的情况下满足他们的要求,而没有经验的赛车或性别分布,就自动化的语音识别而言。该项目的新颖性是确保语音助理系统中隐私,包容性和政策合规性的新技术和机制。该项目的更广泛的意义和重要性包括1)通过各种宣传和教育活动提高K-12社区网络安全的普遍认识; 2)培训下一代网络安全研究人员,特别是人为不足和少数群体; 3)通过开发新的课程材料和动手实验室来加强网络安全教育。该项目首先开发了一种基于语音的隐私通知机制,以使用户(尤其是视力障碍用户)通过语音渠道做出明智的隐私决策。它为可访问和包容性的隐私通知创建了一个新的范式。然后,该项目提出了一个基于机器学习的动态分析框架,该框架允许对语音助手系统中的策略合规性和社会偏见进行系统评估。用户可以使用它来检查语音应用中的任何隐私或内容安全违规行为,并有可能帮助政府机构对Amazon Alexa和Google Assistant Platforms中现有语音应用程序的政策合规性实践进行大规模投资。最后,该项目开发了静态分析技术,以帮助开发人员在开发阶段生产符合政策的语音应用程序。 This project also integrates a comprehensive education and outreach plan with the proposed research to train the next generation of cybersecurity researchers in an interdisciplinary environment, and to attract more students from underrepresented groups into the cybersecurity field.This award reflects NSF's statutory mission and has been deemed precious of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Long Cheng其他文献
Investigating tools for evaluating service and improvement opportunities on bicycle routes in Ohio, United States
研究评估美国俄亥俄州自行车路线服务和改进机会的工具
- DOI:
10.1016/j.multra.2022.100040 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Kailai Wang;Gulsah Akar;Long Cheng;Kevin Lee;Meredyth Sanders - 通讯作者:
Meredyth Sanders
A CPG-based Control Architecture for 3D Locomotion of a snake-like robot
基于 CPG 的蛇形机器人 3D 运动控制架构
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Zhenshan Bing;Long Cheng;Kai Huang;Mingchuan Zhou;A. Knoll - 通讯作者:
A. Knoll
SwiftS: A Dependency-Aware and Resource Efficient Scheduling for High Throughput in Clouds
SwiftS:一种用于云中高吞吐量的依赖感知和资源高效调度
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Jinwei Liu;Long Cheng - 通讯作者:
Long Cheng
Effect of SiO2 grafted MWCNTs on the mechanical and dielectric properties of PEN composite films
SiO2接枝MWCNT对PEN复合薄膜力学和介电性能的影响
- DOI:
10.1016/j.apsusc.2015.09.086 - 发表时间:
2015-12 - 期刊:
- 影响因子:6.7
- 作者:
Jin Fei;Feng Mengna;Huang Xu;Long Cheng;Jia Kun;Liu Xiaobo - 通讯作者:
Liu Xiaobo
Magnetic field tuning of spin resonance in TmFeO3 single crystal probed with THz transient
太赫兹瞬态探测 TmFeO3 单晶中自旋共振的磁场调谐
- DOI:
10.1088/1361-648x/ab6d0f - 发表时间:
2020-01 - 期刊:
- 影响因子:0
- 作者:
Jiajia Guo;Long Cheng;Zhuang Ren;Wenjie Zhang;Xian Lin;Zuanming Jin;Shixun Cao;Zhigao Sheng;Guohong Ma - 通讯作者:
Guohong Ma
Long Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Long Cheng', 18)}}的其他基金
Collaborative Research: SAI-R: Integrative Cyberinfrastructure for Enhancing and Accelerating Online Abuse Research
合作研究:SAI-R:用于加强和加速在线滥用研究的综合网络基础设施
- 批准号:
2228616 - 财政年份:2022
- 资助金额:
$ 50.25万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Learning Platform and Education Curriculum for Artificial Intelligence-Driven Socially-Relevant Cybersecurity
合作研究:EAGER:SaTC-EDU:人工智能驱动的社会相关网络安全的学习平台和教育课程
- 批准号:
2114920 - 财政年份:2021
- 资助金额:
$ 50.25万 - 项目类别:
Standard Grant
相似国自然基金
恶劣条件下Web服务QoS预测与QoS确保的服务组合卸载方法研究
- 批准号:62172062
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
恶劣条件下Web服务QoS预测与QoS确保的服务组合卸载方法研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
为明天城市的清洁空气融资: 通过土地增值回馈确保城市可持续发展、提高城市空气质量的潜力
- 批准号:71961137006
- 批准年份:2019
- 资助金额:190 万元
- 项目类别:国际(地区)合作与交流项目
反馈时延与丢包下确保事件触发线性系统稳定的反馈网络带宽条件研究
- 批准号:
- 批准年份:2019
- 资助金额:59 万元
- 项目类别:面上项目
确保人体安全的无线可充电传感器网络系统优化算法研究
- 批准号:61502229
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CNS Core: Small: Ensuring Privacy by Runtime Analog Sanitization of Solid State Storage Devices
CNS 核心:小型:通过固态存储设备的运行时模拟清理确保隐私
- 批准号:
2403540 - 财政年份:2023
- 资助金额:
$ 50.25万 - 项目类别:
Standard Grant
Ensuring Data Privacy in Deep Learning through Compressive Learning
通过压缩学习确保深度学习中的数据隐私
- 批准号:
EP/X03447X/1 - 财政年份:2023
- 资助金额:
$ 50.25万 - 项目类别:
Research Grant
SaTC: CORE: Medium: Privacy for All: Ensuring Fair Privacy Protection in Machine Learning
SaTC:核心:媒介:所有人的隐私:确保机器学习中公平的隐私保护
- 批准号:
2029038 - 财政年份:2021
- 资助金额:
$ 50.25万 - 项目类别:
Standard Grant
CNS Core: Small: Ensuring Privacy by Runtime Analog Sanitization of Solid State Storage Devices
CNS 核心:小型:通过固态存储设备的运行时模拟清理确保隐私
- 批准号:
2007403 - 财政年份:2020
- 资助金额:
$ 50.25万 - 项目类别:
Standard Grant
Authentication protocol with privacy protection ensuring receipt-freeness, coersion-resistance and deniability
具有隐私保护功能的身份验证协议,确保无接收性、抗胁迫性和可否认性
- 批准号:
18K11297 - 财政年份:2018
- 资助金额:
$ 50.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)