CAREER: Deploying Transferable Medical Imaging Diagnosis System in Diverse Environments
职业:在不同环境中部署可转移的医学影像诊断系统
基本信息
- 批准号:2239537
- 负责人:
- 金额:$ 57.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Medical imaging, such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), chest X-ray, and retinal imaging, are valuable tools to assist in diagnosis. Medical imaging analysis has been significantly advanced using deep learning models. The knowledge extracted from large amounts of medical data can be used to make predictions for new patients. It has been demonstrated in many cases that the performances of machine learning models are comparable to board-certified radiologists or other professional experts, indicating the potential successful integration of those models in clinical applications. For example, imagine a patient notices a painless rash on their skin. If they could take a photo with a cell phone and receive a quick assessment comparable to experienced dermatologists, life-threatening diseases would be intervened or avoided early. However, the current success of deep learning is heavily dependent on large and high-quality labeled datasets. Such nearly perfect environments are only available in ideal lab environments because of the population shift, device differences, or rare diseases in real clinical applications. This project plans to focus on those specific challenges of non-ideal medical imaging diagnosis environments to advance the knowledge of building transferrable deep learning models and enhance national health by providing better tools for medical imaging diagnosis. Furthermore, this research will support the cross-disciplinary development of a diverse cohort of Ph.D. and undergraduate students and outreach activities to diverse communities.Technically, this project will investigate and build transferable medical imaging diagnosis systems in diverse environments. The project proceeds with one overarching theme of leveraging the understudied geometric properties of deep neural networks to address three universal barriers when deploying medical imaging systems in various environments. Specifically, there are challenges to transferring models to novel classes, where there are not enough training samples, and novel domains, where the deploying environments change, and more importantly, preserving the previous knowledge in the model. If successful, the proposed research is expected to advance the understanding of building transferring deep learning models by leveraging a novel geometric interpretation of deep neural networks partitioning the input and feature space into generalized Voronoi diagrams. The driving applications of the proposed techniques are the prediction of long-tailed disease patterns on chest X-rays and ensuring consistent screening services for glaucoma in underserved communities. In addition, the proposed methods have the potential to be extended to similar scenarios with diverse deployment environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
医学成像,例如计算机断层扫描 (CT)、磁共振成像 (MRI)、胸部 X 光检查和视网膜成像,是辅助诊断的宝贵工具。使用深度学习模型,医学成像分析已取得显着进步。从大量医疗数据中提取的知识可用于对新患者进行预测。许多案例已证明,机器学习模型的性能可与经过委员会认证的放射科医生或其他专业专家相媲美,这表明这些模型在临床应用中的潜在成功集成。例如,假设一名患者注意到皮肤上出现无痛性皮疹。如果他们能用手机拍照并获得与经验丰富的皮肤科医生相当的快速评估,那么危及生命的疾病将得到早期干预或避免。然而,当前深度学习的成功在很大程度上依赖于大型且高质量的标记数据集。由于实际临床应用中的人群转移、设备差异或罕见疾病,这种近乎完美的环境只有在理想的实验室环境中才能实现。该项目计划重点关注非理想医学影像诊断环境的具体挑战,以提高构建可迁移深度学习模型的知识,并通过为医学影像诊断提供更好的工具来增强国民健康。此外,这项研究将支持多元化博士群体的跨学科发展。从技术上讲,该项目将研究并建立在不同环境中可转移的医学影像诊断系统。该项目的总体主题是利用深度神经网络未充分研究的几何特性来解决在各种环境中部署医学成像系统时面临的三个普遍障碍。具体来说,将模型转移到没有足够训练样本的新类别和部署环境发生变化的新领域方面存在挑战,更重要的是,保留模型中的先前知识。如果成功,所提出的研究预计将通过利用深度神经网络的新颖几何解释将输入和特征空间划分为广义 Voronoi 图来增进对构建迁移深度学习模型的理解。所提出技术的推动应用是预测胸部 X 光的长尾疾病模式,并确保服务不足的社区为青光眼提供一致的筛查服务。此外,所提出的方法有可能扩展到具有不同部署环境的类似场景。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mingchen Gao其他文献
3D Anatomical Shape Atlas Construction Using Mesh Quality Preserved Deformable Models
使用网格质量保留可变形模型构建 3D 解剖形状图集
- DOI:
10.1007/978-3-642-33463-4_2 - 发表时间:
2012 - 期刊:
- 影响因子:1.4
- 作者:
Xinyi Cui;Shaoting Zhang;Yiqiang Zhan;Mingchen Gao;Junzhou Huang;Dimitris N. Metaxas - 通讯作者:
Dimitris N. Metaxas
Sports on the Curative Effect of Breast Cancer Drug-Loaded Nanoparticle Drug Delivery System
- DOI:
10.38007/ijst.2022.030405 - 发表时间:
2022-10 - 期刊:
- 影响因子:0
- 作者:
Mingchen Gao - 通讯作者:
Mingchen Gao
Realistic Lung Nodule Synthesis With Multi-Target Co-Guided Adversarial Mechanism
具有多目标协同引导对抗机制的真实肺结节合成
- DOI:
10.1109/tmi.2021.3077089 - 发表时间:
2021-05 - 期刊:
- 影响因子:10.6
- 作者:
Qiuli Wang;Xiaohong Zhang;Wei Zhang;Mingchen Gao;Sheng Huang;Jian Wang;Jiuquan Zhang;Dan Yang;Chen Liu - 通讯作者:
Chen Liu
Indoor Thermal Environment of Thin Membrane Structure Buildings: A Review
薄膜结构建筑室内热环境:综述
- DOI:
10.1016/j.enbuild.2020.110704 - 发表时间:
2021 - 期刊:
- 影响因子:6.7
- 作者:
Guoji Tian;Yuesheng Fan;Mingchen Gao;Huan Wang;Huifan Zheng;Jie Liu;Changzhou Liu - 通讯作者:
Changzhou Liu
Experimental Study on Indoor Thermal Environment of Industrial Building Spaces Enclosed by Fabric Membranes
织物膜围合工业建筑空间室内热环境试验研究
- DOI:
10.1080/23744731.2020 - 发表时间:
2020 - 期刊:
- 影响因子:1.9
- 作者:
Guoji Tian;Yuesheng Fan;Huan Wang;Huifan Zheng;Mingchen Gao;Jie Liu;Changzhou Liu - 通讯作者:
Changzhou Liu
Mingchen Gao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于Wasm的云边端协同智能物联网任务部署与调度技术研究
- 批准号:62302096
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
标注数据、部署算力、可解释性约束下的通用多任务学习研究
- 批准号:62306214
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
车联网数字孪生体边缘协同部署和隐私保护关键技术研究
- 批准号:62371142
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向低资源场景的医学预训练模型优化与部署关键技术研究
- 批准号:62372466
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向海事服务保障的通算融合网络资源部署与调度关键技术研究
- 批准号:62371085
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
官学協働による根拠に基づいた健康寿命の格差縮小施策の立案:部署横断型データの解析
通过政府与学术界的合作规划循证措施,减少健康预期寿命的差异:跨部门数据分析
- 批准号:
24K20242 - 财政年份:2024
- 资助金额:
$ 57.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
OAC Core: A Scalable and Deployable Container Orchestration Cyber Infrastructure Toolkit for Deploying Big Data Analytics Applications in Public Cloud
OAC Core:用于在公共云中部署大数据分析应用程序的可扩展和可部署的容器编排网络基础设施工具包
- 批准号:
2313738 - 财政年份:2023
- 资助金额:
$ 57.85万 - 项目类别:
Standard Grant
Deploying Intracortical Electrode Arrays to Record and Stimulate in a Tissue Volume
部署皮质内电极阵列以在组织体积中进行记录和刺激
- 批准号:
10636123 - 财政年份:2023
- 资助金额:
$ 57.85万 - 项目类别:
Validation of the Autonomy Scale in Intradepartmental Activities of Certified Nurses
认证护士部门内活动自主量表的验证
- 批准号:
23K16398 - 财政年份:2023
- 资助金额:
$ 57.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deploying a co-creative AI tool to accelerate high-growth companies
部署共同创意的人工智能工具来加速公司的高增长
- 批准号:
10080244 - 财政年份:2023
- 资助金额:
$ 57.85万 - 项目类别:
Collaborative R&D