CAREER: Learning Structured Models with Natural Language Supervision
职业:利用自然语言监督学习结构化模型
基本信息
- 批准号:2238240
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Current machine learning models struggle to understand visual scenes, perform household chores, and complete other tasks that require integrating low-level perception and action with high-level common-sense and background knowledge. This CAREER project will use language to bridge this gap by developing techniques that use language-based dataset annotations and large text corpora to guide training of machine learning models for robotics, computer vision, and other problem domains. New approaches for learning with natural language supervision will reduce the amount of data needed to train machine learning models and enable end users to shape model behavior without complex formal specifications. The project will provide research training to undergraduate and graduate students, and will be integrated into a new workshop series that connects academic language processing researchers and researchers in other application areas (with a focus on providing learning and community-building opportunities for students from historically marginalized groups). The educational component of the project will develop new curriculum materials on natural language processing and human factors in artificial intelligence systems, targeting high school and undergraduate students as well as non-technical industry groups (like journalists and policy researchers) studying the effects of automated decision-making systems.The technical core of this project is a new family of probabilistic latent variable models in which latent representations of plans or percepts jointly generate task data and natural language annotations. When language annotations are available, they can directly supervise the content of these latent representations; on unannotated examples, information from text corpora may be used to constrain latent representations' distribution. Language thus plays two roles: as a source of information about the structure of individual training examples and a source of general, task-level background knowledge. Research will yield concrete instantiations of this modeling framework for policy learning, language modeling, and scene understanding, using language to produce structured, composable models that combine the flexibility of the deep learning toolkit with the sample efficiency and controllability of symbolic representations, while requiring neither massive labeled datasets nor precisely formalized symbolic domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当前的机器学习模型难以理解视觉场景,执行家务和完成其他任务,这些任务需要将低级感知和动作与高级常识和背景知识相结合。该职业项目将使用语言来通过开发使用基于语言的数据集注释和大型文本语料库来指导机器人技术,计算机视觉和其他问题域的机器学习模型的培训来弥合这一差距。通过自然语言监督进行学习的新方法将减少训练机器学习模型所需的数据量,并使最终用户无需复杂的形式规格就可以塑造模型行为。该项目将为本科生和研究生提供研究培训,并将整合到一个新的研讨会系列中,该系列连接其他应用领域的学术语言处理研究人员和研究人员(重点是为历史上边缘化群体的学生提供学习和社区建设机会)。 The educational component of the project will develop new curriculum materials on natural language processing and human factors in artificial intelligence systems, targeting high school and undergraduate students as well as non-technical industry groups (like journalists and policy researchers) studying the effects of automated decision-making systems.The technical core of this project is a new family of probabilistic latent variable models in which latent representations of plans or percepts jointly generate task data and natural language annotations.当有语言注释可用时,他们可以直接监督这些潜在表示的内容;在未经通知的示例中,可以使用来自文本语料库的信息来限制潜在表示的分布。因此,语言扮演两个角色:作为有关单个培训示例结构的信息来源,以及一般任务级背景知识的来源。研究将产生该建模框架的具体实例,用于政策学习,语言建模和场景理解,使用语言产生结构化的,可合并的模型,将深度学习工具包的灵活性与示例效率和符号表示的柔韧性相结合,同时既不需要大规模的标签,也不需要通过对符号域进行宣传。基金会的智力优点和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacob Andreas其他文献
Good-Enough Compositional Data Augmentation
- DOI:
10.18653/v1/2020.acl-main.676 - 发表时间:
2019-04 - 期刊:
- 影响因子:0
- 作者:
Jacob Andreas - 通讯作者:
Jacob Andreas
Guided K-best Selection for Semantic Parsing Annotation
语义解析标注的引导 K-best 选择
- DOI:
10.18653/v1/2022.acl-demo.11 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Anton Belyy;Huang Chieh;Jacob Andreas;Emmanouil Antonios Platanios;Sam Thomson;Richard Shin;Subhro Roy;Aleksandr Nisnevich;Charles C. Chen;Benjamin Van Durme - 通讯作者:
Benjamin Van Durme
Loose LIPS Sink Ships: Asking Questions in Battleship with Language-Informed Program Sampling
松散的嘴唇沉船:通过语言通知的程序采样在战舰中提问
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Gabriel Grand;Valerio Pepe;Jacob Andreas;Joshua B. Tenenbaum - 通讯作者:
Joshua B. Tenenbaum
From Word Models to World Models: Translating from Natural Language to the Probabilistic Language of Thought
从文字模型到世界模型:从自然语言到概率性思维语言的翻译
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
L. Wong;Gabriel Grand;Alexander K. Lew;Noah D. Goodman;Vikash K. Mansinghka;Jacob Andreas;J. Tenenbaum - 通讯作者:
J. Tenenbaum
Corpus Creation for New Genres: A Crowdsourced Approach to PP Attachment
新流派的语料库创建:PP 附件的众包方法
- DOI:
10.7916/d8ff41pf - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Mukund Jha;Jacob Andreas;K. Thadani;Sara Rosenthal;K. McKeown - 通讯作者:
K. McKeown
Jacob Andreas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacob Andreas', 18)}}的其他基金
Collaborative Research: RI: Medium: Bootstrapping natural feedback for reinforcement learning
合作研究:RI:中:引导强化学习的自然反馈
- 批准号:
2212310 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
利用细胞内RNA结构信息结合深度学习算法设计高效细胞环境特异的CRISPR-Cas13d gRNA
- 批准号:32300521
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于机器学习方法构建铁电固溶体微结构与储能性质的构效关系
- 批准号:12302430
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于深度学习的三维物体智能化抓取策略及机械手自动化结构设计研究
- 批准号:62302517
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于结构化特征学习的三维视觉目标检测
- 批准号:62376032
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
多源动态扩散驱动的结构化图学习理论与方法
- 批准号:62376146
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: Learning from Data on Structured Complexes: Products, Bundles, and Limits
职业:从结构化复合体的数据中学习:乘积、捆绑和限制
- 批准号:
2340481 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
- 批准号:
10723292 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
CAREER: Reinforcement Learning-Based Control of Heterogeneous Multi-Agent Systems in Structured Environments: Algorithms and Complexity
职业:结构化环境中异构多智能体系统的基于强化学习的控制:算法和复杂性
- 批准号:
2237830 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: Resource Efficient Systems for Machine Learning on Structured Data
职业:结构化数据机器学习的资源高效系统
- 批准号:
2237306 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant