CAREER: Resource Efficient Systems for Machine Learning on Structured Data

职业:结构化数据机器学习的资源高效系统

基本信息

  • 批准号:
    2237306
  • 负责人:
  • 金额:
    $ 67.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

Many scientific and enterprise datasets include relationships among data items, which can be represented as graphs. Applying machine learning methods on such graph datasets can yield benefits across several domains, including social networks, drug discovery, and search engines. However, existing software for applying machine learning methods on large graph datasets is slow, complex, and expensive. This NSF CAREER proposal aims to address these challenges by developing software that will make it faster, easier, and less expensive to analyze large graph datasets. The proposed research includes three thrusts that focus on different stages of machine learning workflows. The first thrust aims to develop software that will make it faster and easier to train machine learning models on large graphs using many machines. The second thrust focuses on how to efficiently handle scenarios where graphs are updated with additional data. The third thrust considers how to make prediction less expensive when using machine learning models trained on large graph datasets. The broader impacts of the proposed research include improved analysis capabilities for data scientists working in many areas. Furthermore, all software developed as a part of this project will be made freely available to the wider community and will include documentation and tutorials to help users from computer science and other academic disciplines to get started. Additionally, the proposal plans to develop a new undergraduate course that teaches students how to use software frameworks to process large datasets. The assignments in the course will use software tools developed as a part of this project. The project also includes plans to broaden participation in computer science by organizing a yearly workshop that promotes research opportunities for undergraduate students from underrepresented groups, as well as discussion sessions that can help students who are getting started with research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多科学和企业数据集都包含数据项之间的关系,这些关系可以表示为图。在此类图数据集上应用机器学习方法可以在包括社交网络,药物发现和搜索引擎在内的几个领域产生好处。但是,在大图数据集上应用机器学习方法的现有软件是缓慢,复杂且昂贵的。 NSF职业建议旨在通过开发软件来解决这些挑战,从而使其更快,更容易,分析大型图数据集的软件。拟议的研究包括三个推力,专注于机器学习工作流的不同阶段。第一个推力旨在开发软件,该软件将使使用许多机器在大图上训练机器学习模型更快,更容易。第二个推力重点是如何有效处理图形更新的方案,并使用其他数据更新。第三个推力考虑了在使用大型图形数据集训练的机器学习模型时如何使预测更便宜。拟议的研究的更广泛影响包括改进在许多领域工作的数据科学家的分析能力。此外,作为该项目的一部分开发的所有软件将免费提供给更广泛的社区,并将包括文档和教程,以帮助来自计算机科学和其他学术学科的用户开始。此外,该提案计划开发一门新的本科课程,该课程教会学生如何使用软件框架处理大型数据集。课程中的作业将使用开发的软件工具作为该项目的一部分。 The project also includes plans to broaden participation in computer science by organizing a yearly workshop that promotes research opportunities for undergraduate students from underrepresented groups, as well as discussion sessions that can help students who are getting started with research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shivaram Venkataraman其他文献

CHAI: Clustered Head Attention for Efficient LLM Inference
CHAI:用于高效 LLM 推理的集群头注意力
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Saurabh Agarwal;Bilge Acun;Basil Homer;Mostafa Elhoushi;Yejin Lee;Shivaram Venkataraman;Dimitris Papailiopoulos;Carole
  • 通讯作者:
    Carole

Shivaram Venkataraman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shivaram Venkataraman', 18)}}的其他基金

Collaborative Research: Frameworks: Diamond: Democratizing Large Neural Network Model Training for Science
合作研究:框架:钻石:科学大型神经网络模型训练的民主化
  • 批准号:
    2311767
  • 财政年份:
    2023
  • 资助金额:
    $ 67.61万
  • 项目类别:
    Standard Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
  • 批准号:
    2312688
  • 财政年份:
    2023
  • 资助金额:
    $ 67.61万
  • 项目类别:
    Continuing Grant
III: Small: A New Machine Learning Approach for Improved Entity Identification
III:小:改进实体识别的新机器学习方法
  • 批准号:
    1815538
  • 财政年份:
    2018
  • 资助金额:
    $ 67.61万
  • 项目类别:
    Standard Grant

相似国自然基金

河套灌区冬播小麦套种向日葵资源高效利用的生态生理机制
  • 批准号:
    32360546
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
公平高效的多维云计算资源分配机制设计
  • 批准号:
    12301412
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向个性化联邦学习的高效能高隐私无线资源管理
  • 批准号:
    62301015
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向大规模分布式图神经网络高效训练的资源管理机制
  • 批准号:
    62302187
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向异构深度学习集群的高效多维度资源配置与调度优化方法研究
  • 批准号:
    62372184
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: A Networking and Learning Co-Design Framework for Data-Efficient Resource Management
职业:用于数据高效资源管理的网络和学习协同设计框架
  • 批准号:
    2239458
  • 财政年份:
    2023
  • 资助金额:
    $ 67.61万
  • 项目类别:
    Continuing Grant
The Manhattan HIV Brain Bank
曼哈顿艾滋病脑库
  • 批准号:
    10818199
  • 财政年份:
    2023
  • 资助金额:
    $ 67.61万
  • 项目类别:
A multi-modal approach for efficient, point-of-care screening of hypertrophic cardiomyopathy
一种高效、即时筛查肥厚型心肌病的多模式方法
  • 批准号:
    10749588
  • 财政年份:
    2023
  • 资助金额:
    $ 67.61万
  • 项目类别:
Mothers Optimizing Resources Everyday (MORE): Buffering mental health inequities in low-resourced perinatal populations
母亲每天优化资源(更多):缓解资源匮乏的围产期人群的心理健康不平等
  • 批准号:
    10524365
  • 财政年份:
    2022
  • 资助金额:
    $ 67.61万
  • 项目类别:
Mothers Optimizing Resources Everyday (MORE): Buffering mental health inequities in low-resourced perinatal populations
母亲每天优化资源(更多):缓解资源匮乏的围产期人群的心理健康不平等
  • 批准号:
    10709536
  • 财政年份:
    2022
  • 资助金额:
    $ 67.61万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了