CAREER: Identifying and Exploiting Multi-Agent Symmetries

职业:识别和利用多智能体对称性

基本信息

  • 批准号:
    2237963
  • 负责人:
  • 金额:
    $ 53.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2028-04-30
  • 项目状态:
    未结题

项目摘要

It is widely believed by scientists that our universe follows certain symmetry patterns and principles, which lead to profound implications such as conservation laws. Artificial intelligence (AI) can and has already benefited tremendously from exploiting these symmetries. This project seeks to identify and exploit symmetries that are prevalent in cooperative AI tasks, where a group of multiple autonomous sequential decision makers, or agents, plan and learn to maximize their combined benefit. As an example, consider the application of adaptive traffic signal control, where each intersection can be modeled as an agent controlling its traffic signal in a way that adapts to real-time traffic conditions to reduce congestion. There exist certain symmetries when the topology of the road network is regular, e.g., as a 4-connected grid, and the road condition is uniform. When done properly, such multi-agent symmetries can be identified and exploited to greatly improve the efficiency and effectiveness of the current solutions to cooperative AI. This project also integrates the proposed research into an array of education initiatives, playing key roles in the curriculum development and undergraduate research experiences at the PI's university, as well as outreach activities that bridge academia with industry practitioners and community stakeholders.This research will establish a unified framework and develop a set of interdependent methods that formulate, identify, and exploit multi-agent symmetries for cooperative AI tasks. The research first adopts a mathematically rigorous language to formulate the notion of multi-agent symmetry into the framework of symmetric Markov game, revealing its core property which can be exploited by planning and learning methods. Then, the research plan concretizes how to exploit several most common types of multi-agent symmetries, including permutation symmetries, Euclidean symmetries, and hierarchies of multi-agent symmetries of mixed types. Next, the research plan discusses issues that are critical for practice, including identifying and exploiting approximate multi-agent symmetries and dealing with partial observability. Finally, the research features several real-world applications, including adaptive traffic signal control, automated circuit design, and material design, to evaluate and showcase the proposed methodology. This project is jointly funded by Robust Intelligence and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学家普遍认为,我们的宇宙遵循某些对称模式和原则,从而导致了诸如保护法等深远的含义。人工智能(AI)可以并且已经从利用这些对称性中受益匪浅。该项目旨在识别和利用在合作AI任务中普遍存在的对称性,其中一组多个自主的顺序决策者或代理人计划并学会了最大化其综合利益。例如,考虑适应性流量信号控制的应用,可以将每个交叉路口建模为控制其交通信号的代理,以适应实时交通状况以减少拥塞的方式。当道路网络的拓扑是常规的,例如,作为4个连接的网格并且道路状况均匀时,存在某些对称性。正确完成后,可以确定和利用此类多代理对称性,以极大地提高当前合作AI解决方案的效率和有效性。该项目还将拟议的研究集成到一系列教育计划中,在Pi University的课程开发中扮演关键角色和本科研究经验,以及与行业从业人员和社区利益相关者桥接学术界的外展活动。这项研究将建立一项研究统一的框架并开发一组相互依存的方法,这些方法为合作AI任务制定,识别和利用多代理对称性。该研究首先采用了一种数学上严格的语言,以将多代理对称性的概念提出在对称马尔可夫游戏的框架中,从而揭示了其核心属性,可以通过计划和学习方法来利用。然后,研究计划结合了如何利用多种类型的多代理对称性类型的类型,包括置换对称性,欧几里得对称性和混合类型多代理对称性的层次结构。接下来,研究计划将讨论对实践至关重要的问题,包括识别和利用大概的多代理对称性以及处理部分可观察性。最后,该研究具有多种现实世界应用,包括自适应交通信号控制,自动化电路设计和材料设计,以评估和展示拟议的方法。 该项目由强大的情报和刺激竞争性研究的既定计划共同资助(EPSCOR)。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,认为值得通过评估来获得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qi Zhang其他文献

Endogenous adult neurogenesis and cognitive function recovery following traumatic brain injury in the rat hippocampus
大鼠海马脑外伤后内源性成体神经发生和认知功能恢复
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Wangmiao Zhao;Linchun Huan;Yan Zhao;Jie Zhao;Qi Zhang;Lin Zhang;Rong Yan;Shuyuan Yang;Xinyu Yang
  • 通讯作者:
    Xinyu Yang
Influences of the timing of extreme precipitation on floods in the Poyang Lake, China
极端降水发生时间对鄱阳湖洪水的影响
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Xianghu Li;Qi Hu;Rong Wang;Dan Zhang;Qi Zhang
  • 通讯作者:
    Qi Zhang
Semi-parametric test based on spline smoothing for genetic association studies under stratified populations.
基于样条平滑的半参数检验用于分层人群下的遗传关联研究。
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qi Zhang
  • 通讯作者:
    Qi Zhang
This information is current as Molecules in Rheumatoid Arthritis Activation by Soluble Costimulatory Aberrant Regulation of Synovial T Cell
该信息最新为“滑膜 T 细胞可溶性共刺激异常调节激活类风湿性关节炎的分子”
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Wan;H. Nie;Ailian Liu;G. Feng;D. He;R. Xu;Qi Zhang;C. Dong;Jingwu Z. Zhang
  • 通讯作者:
    Jingwu Z. Zhang
Expression changes of nerve cell adhesion molecules L1 and semaphorin 3A after peripheral nerve injur
周围神经损伤后神经细胞粘附分子L1和脑信号蛋白3A的表达变化
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Jian Li;Qi Zhang;Fei Ding;Yanpei Gong
  • 通讯作者:
    Yanpei Gong

Qi Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qi Zhang', 18)}}的其他基金

CCRI: Planning-C: Planning to Build Digital Infrastructure for Real-Time, Continual, and Intelligent Transportation Analysis and Management
CCRI:Planning-C:规划构建实时、持续、智能交通分析和管理的数字基础设施
  • 批准号:
    2213731
  • 财政年份:
    2022
  • 资助金额:
    $ 53.53万
  • 项目类别:
    Standard Grant
GOALI: Coordination of Multi-Stakeholder Process Networks in a Highly Electrified Chemical Industry
目标:在高度电气化的化工行业中协调多利益相关者流程网络
  • 批准号:
    2215526
  • 财政年份:
    2022
  • 资助金额:
    $ 53.53万
  • 项目类别:
    Standard Grant
RI: Small: Cooperative Planning and Learning via Scalable and Learnable Multi-Agent Commitments
RI:小型:通过可扩展和可学习的多代理承诺进行合作规划和学习
  • 批准号:
    2154904
  • 财政年份:
    2022
  • 资助金额:
    $ 53.53万
  • 项目类别:
    Standard Grant
CAREER: Optimization-Based Computational Discovery of Decision-Making Processes
职业:基于优化的决策过程计算发现
  • 批准号:
    2044077
  • 财政年份:
    2021
  • 资助金额:
    $ 53.53万
  • 项目类别:
    Continuing Grant
Adaptive Robust Optimization with Endogenous Uncertainty and Active Learning in Smart Manufacturing
智能制造中具有内生不确定性和主动学习的自适应鲁棒优化
  • 批准号:
    2030296
  • 财政年份:
    2021
  • 资助金额:
    $ 53.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Aerosols, Nitrogen Oxides, and Ozone at the Mt. Bachelor Observatory
合作研究:巴赫山天文台的气溶胶、氮氧化物和臭氧
  • 批准号:
    1829803
  • 财政年份:
    2018
  • 资助金额:
    $ 53.53万
  • 项目类别:
    Standard Grant
CAREER:RNA conformational dynamics in the regulation of microRNA biogenesis
职业:RNA 构象动力学在 microRNA 生物发生调控中的作用
  • 批准号:
    1652676
  • 财政年份:
    2017
  • 资助金额:
    $ 53.53万
  • 项目类别:
    Continuing Grant
SGER: Impacts of Air Pollution Controls on Primary and Secondary Aerosols during CAREBEIJING
SGER:CAREBEIJING 期间空气污染控制对一次和二次气溶胶的影响
  • 批准号:
    0840673
  • 财政年份:
    2008
  • 资助金额:
    $ 53.53万
  • 项目类别:
    Standard Grant
Exploiting the giant electrocaloric effect
利用巨大的电热效应
  • 批准号:
    EP/E035043/1
  • 财政年份:
    2007
  • 资助金额:
    $ 53.53万
  • 项目类别:
    Research Grant
Global Solutions of Semilinear Parabolic and Elliptic Equations
半线性抛物型和椭圆方程的全局解
  • 批准号:
    9896286
  • 财政年份:
    1998
  • 资助金额:
    $ 53.53万
  • 项目类别:
    Standard Grant

相似国自然基金

利用线粒体高通量表观遗传检测技术和机器学习方法的妊高征患者产后高血压风险早期识别及疾病预警模型构建
  • 批准号:
    82304268
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
猪德尔塔冠状病毒利用宿主APN受体跨种识别的分子机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用深度学习方法构建纳米孔测序识别RNA编辑的神经网络模型
  • 批准号:
    32270695
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
游憩化利用下废弃矿区地方意义识别、建构路径选择及其驱动机制
  • 批准号:
    42271255
  • 批准年份:
    2022
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
农牧混合区白星花金龟成虫寄主利用模式及识别机制
  • 批准号:
    32272550
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Identifying and exploiting therapeutic vulnerabilities of tumor-host interactions that drive bone-to-meninges breast cancer metastasis
识别和利用导致骨到脑膜乳腺癌转移的肿瘤与宿主相互作用的治疗脆弱性
  • 批准号:
    10826488
  • 财政年份:
    2023
  • 资助金额:
    $ 53.53万
  • 项目类别:
Identifying and exploiting metabolic vulnerabilities in cancer using mass spectrometry and tracing approaches
使用质谱和追踪方法识别和利用癌症的代谢脆弱性
  • 批准号:
    10324039
  • 财政年份:
    2021
  • 资助金额:
    $ 53.53万
  • 项目类别:
Identifying novel tick attractants and repellents by exploiting their olfactory and eco-physiology
通过利用嗅觉和生态生理学来识别新型蜱虫引诱剂和驱虫剂
  • 批准号:
    10418801
  • 财政年份:
    2021
  • 资助金额:
    $ 53.53万
  • 项目类别:
Identifying and exploiting the novel sources of genetic resistance for root diseases of pea
识别和开发豌豆根部病害遗传抗性的新来源
  • 批准号:
    2589571
  • 财政年份:
    2021
  • 资助金额:
    $ 53.53万
  • 项目类别:
    Studentship
Identifying novel tick attractants and repellents by exploiting their olfactory and eco-physiology
通过利用嗅觉和生态生理学来识别新型蜱虫引诱剂和驱虫剂
  • 批准号:
    10289312
  • 财政年份:
    2021
  • 资助金额:
    $ 53.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了