CAREER: Optimization-Based Computational Discovery of Decision-Making Processes

职业:基于优化的决策过程计算发现

基本信息

  • 批准号:
    2044077
  • 负责人:
  • 金额:
    $ 52.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Decision making is fundamental to everyday life, but many decision-making processes are poorly understood. For example, experts in the operation of chemical plants make decisions based on years of experience, but their decision strategies often are not well documented and, due to the complexity of these manufacturing processes, are difficult to explain even to fellow operators. This means the complete transfer of expert knowledge to new operators remains an unsolved problem. Likewise in microbiology, cells can be considered autonomous agents that make decisions regarding gene expression and cell metabolic function. While we can observe the decisions cells make in experiments, we often do not understand the motivation for these choices. Answering this question would provide fundamental insights that could advance cancer treatment, immunology research, and biomanufacturing operations. These challenges provide the motivation for this research program which aims to develop a computational framework that uses observations of decisions to uncover the underlying decision-making processes. Our research will advance the theory and algorithmic representation of this fundamental problem. Through our integrated research and education activities, we will teach future scientists and engineers to use advanced decision-making tools and promote interdisciplinary collaborations between researchers that work in the field of decision science.Our proposed approach is inspired by the principle of optimality, which conjectures that autonomous agents generally make decisions in some optimal fashion. Following this principle, we propose to model decision-making processes as mathematical optimization problems in which decisions are considered optimal solutions. Given a set of observations, each represented by the decisions made in a specific situation, the goal is to infer the optimization model whose solution results in the observed decisions; this is referred to as Inverse Optimization (IO). The IO approach enjoys all the modeling flexibility provided by mathematical optimization, facilitates incorporation of domain knowledge, and allows the generation of inherently interpretable decision-making models. In this research, we will develop computationally efficient IO algorithms and apply them to a range of problems in science and engineering. Three specific Aims are proposed: (1) learning unknown objective functions, (2) learning unknown constraints, and (3) optimization with IO-based models. Aims 1 and 2 focus on the development of computational methods addressing the challenging aspects of IO, such as nonlinearity, discrete decisions, model selection, and adaptive sampling. Mixed-integer programming, bilevel optimization, and decomposition will be applied in innovative ways to ensure computational tractability. In Aim 3, we will demonstrate how optimization models derived from IO can not only help discover hidden decision-making processes but also serve as surrogate optimizers and embedded models in hierarchical optimization, with specific applications in bioprocess optimization and environmental policy design. Because the principle of optimality enjoys broad (albeit often approximate) validity and the IO methods developed in our research will be generalizable, our work has the potential to broadly impact artificial intelligence research, robotics, biology, healthcare, and even management and behavioral science. We will pursue a set of activities that include teaching K-12 students the basic concepts of decision science through games, incorporating optimization into our chemical engineering curriculum, establishing a short course on decision making, and organizing cross-disciplinary workshops.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
决策对于日常生活至关重要,但是许多决策过程对此很了解。例如,化工厂运营的专家根据多年的经验做出决策,但是他们的决策策略通常没有得到充分的记录,并且由于这些制造过程的复杂性,甚至对其他运营商也很难解释。这意味着将专家知识完全转移给新运营商仍然是一个未解决的问题。同样,在微生物学中,可以将细胞视为自主剂,可以决定基因表达和细胞代谢功能。尽管我们可以观察到实验中细胞做出的决策,但我们通常不了解这些选择的动机。回答这个问题将提供基本的见解,以推动癌症治疗,免疫学研究和生物制造操作。这些挑战为该研究计划提供了动力,该计划旨在开发一个计算框架,该计算框架使用决策观察来揭示基本决策过程。我们的研究将推进这个基本问题的理论和算法表示。通过我们的综合研究和教育活动,我们将教导未来的科学家和工程师使用先进的决策工具,并促进在决策科学领域工作的研究人员之间的跨学科合作。我们所提出的方法受到最佳原则的启发,这些原则是猜想的。该自主代理通常以某种最佳方式做出决策。遵循这一原则,我们建议将决策过程建模为数学优化问题,其中决策被视为最佳解决方案。给定一组观察结果,每种观察都以特定情况下的决策表示,目标是推断其解决方案会导致观察到的决策的优化模型;这称为反优化(IO)。 IO方法享受数学优化提供的所有建模灵活性,促进域知识的融合,并允许生成固有的可解释的决策模型。在这项研究中,我们将开发计算高效的IO算法,并将其应用于科学和工程领域的一系列问题。提出了三个具体目标:(1)学习未知目标功能,(2)学习未知的约束以及(3)基于IO的模型的优化。目标1和2的重点是开发计算方法,以解决IO的具有挑战性方面,例如非线性,离散决策,模型选择和自适应抽样。混合企业编程,双光线优化和分解将以创新的方式应用,以确保计算障碍。在AIM 3中,我们将演示从IO中得出的优化模型不仅可以帮助发现隐藏的决策过程,而且还可以作为层次优化的替代优化器和嵌入式模型,以及在生物过程优化和环境策略设计中的特定应用。由于最佳原则具有广泛的(尽管经常近似)的有效性,并且我们的研究中开发的IO方法将是可推广的,因此我们的工作有可能广泛影响人工智能研究,机器人技术,生物学,医疗保健甚至管理和行为科学。我们将开展一系列活动,包括通过游戏教授K-12学生的决策科学基本概念,将优化纳入我们的化学工程课程,建立有关决策的简短课程,并组织跨学科研讨会。这一奖项反映了NSF的奖项。法定任务,并被认为是值得通过基金会的智力优点和更广泛影响的审查标准来评估的值得支持的。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Decomposition and Adaptive Sampling for Data-Driven Inverse Linear Optimization
  • DOI:
    10.1287/ijoc.2022.1162
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rishabh Gupta-;Qi Zhang
  • 通讯作者:
    Rishabh Gupta-;Qi Zhang
Kinetic‐model‐based pathway optimization with application to reverse glycolysis in mammalian cells
基于动力学模型的途径优化及其在哺乳动物细胞中逆转糖酵解的应用
  • DOI:
    10.1002/bit.28249
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Lu, Yen‐An;Brien, Conor M.;Mashek, Douglas G.;Hu, Wei‐Shou;Zhang, Qi
  • 通讯作者:
    Zhang, Qi
Efficient Learning of Decision-Making Models: A Penalty Block Coordinate Descent Algorithm for Data-Driven Inverse Optimization
  • DOI:
    10.1016/j.compchemeng.2022.108123
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rishabh Gupta;Qi Zhang
  • 通讯作者:
    Rishabh Gupta;Qi Zhang
Decision-Focused Surrogate Modeling with Feasibility Guarantee
具有可行性保证的以决策为中心的代理建模
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qi Zhang其他文献

Endogenous adult neurogenesis and cognitive function recovery following traumatic brain injury in the rat hippocampus
大鼠海马脑外伤后内源性成体神经发生和认知功能恢复
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Wangmiao Zhao;Linchun Huan;Yan Zhao;Jie Zhao;Qi Zhang;Lin Zhang;Rong Yan;Shuyuan Yang;Xinyu Yang
  • 通讯作者:
    Xinyu Yang
Influences of the timing of extreme precipitation on floods in the Poyang Lake, China
极端降水发生时间对鄱阳湖洪水的影响
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Xianghu Li;Qi Hu;Rong Wang;Dan Zhang;Qi Zhang
  • 通讯作者:
    Qi Zhang
Semi-parametric test based on spline smoothing for genetic association studies under stratified populations.
基于样条平滑的半参数检验用于分层人群下的遗传关联研究。
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qi Zhang
  • 通讯作者:
    Qi Zhang
This information is current as Molecules in Rheumatoid Arthritis Activation by Soluble Costimulatory Aberrant Regulation of Synovial T Cell
该信息最新为“滑膜 T 细胞可溶性共刺激异常调节激活类风湿性关节炎的分子”
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Wan;H. Nie;Ailian Liu;G. Feng;D. He;R. Xu;Qi Zhang;C. Dong;Jingwu Z. Zhang
  • 通讯作者:
    Jingwu Z. Zhang
Expression changes of nerve cell adhesion molecules L1 and semaphorin 3A after peripheral nerve injur
周围神经损伤后神经细胞粘附分子L1和脑信号蛋白3A的表达变化
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Jian Li;Qi Zhang;Fei Ding;Yanpei Gong
  • 通讯作者:
    Yanpei Gong

Qi Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qi Zhang', 18)}}的其他基金

CAREER: Identifying and Exploiting Multi-Agent Symmetries
职业:识别和利用多智能体对称性
  • 批准号:
    2237963
  • 财政年份:
    2023
  • 资助金额:
    $ 52.11万
  • 项目类别:
    Continuing Grant
CCRI: Planning-C: Planning to Build Digital Infrastructure for Real-Time, Continual, and Intelligent Transportation Analysis and Management
CCRI:Planning-C:规划构建实时、持续、智能交通分析和管理的数字基础设施
  • 批准号:
    2213731
  • 财政年份:
    2022
  • 资助金额:
    $ 52.11万
  • 项目类别:
    Standard Grant
GOALI: Coordination of Multi-Stakeholder Process Networks in a Highly Electrified Chemical Industry
目标:在高度电气化的化工行业中协调多利益相关者流程网络
  • 批准号:
    2215526
  • 财政年份:
    2022
  • 资助金额:
    $ 52.11万
  • 项目类别:
    Standard Grant
RI: Small: Cooperative Planning and Learning via Scalable and Learnable Multi-Agent Commitments
RI:小型:通过可扩展和可学习的多代理承诺进行合作规划和学习
  • 批准号:
    2154904
  • 财政年份:
    2022
  • 资助金额:
    $ 52.11万
  • 项目类别:
    Standard Grant
Adaptive Robust Optimization with Endogenous Uncertainty and Active Learning in Smart Manufacturing
智能制造中具有内生不确定性和主动学习的自适应鲁棒优化
  • 批准号:
    2030296
  • 财政年份:
    2021
  • 资助金额:
    $ 52.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Aerosols, Nitrogen Oxides, and Ozone at the Mt. Bachelor Observatory
合作研究:巴赫山天文台的气溶胶、氮氧化物和臭氧
  • 批准号:
    1829803
  • 财政年份:
    2018
  • 资助金额:
    $ 52.11万
  • 项目类别:
    Standard Grant
CAREER:RNA conformational dynamics in the regulation of microRNA biogenesis
职业:RNA 构象动力学在 microRNA 生物发生调控中的作用
  • 批准号:
    1652676
  • 财政年份:
    2017
  • 资助金额:
    $ 52.11万
  • 项目类别:
    Continuing Grant
SGER: Impacts of Air Pollution Controls on Primary and Secondary Aerosols during CAREBEIJING
SGER:CAREBEIJING 期间空气污染控制对一次和二次气溶胶的影响
  • 批准号:
    0840673
  • 财政年份:
    2008
  • 资助金额:
    $ 52.11万
  • 项目类别:
    Standard Grant
Exploiting the giant electrocaloric effect
利用巨大的电热效应
  • 批准号:
    EP/E035043/1
  • 财政年份:
    2007
  • 资助金额:
    $ 52.11万
  • 项目类别:
    Research Grant
Global Solutions of Semilinear Parabolic and Elliptic Equations
半线性抛物型和椭圆方程的全局解
  • 批准号:
    9896286
  • 财政年份:
    1998
  • 资助金额:
    $ 52.11万
  • 项目类别:
    Standard Grant

相似国自然基金

基于缓冲区的复杂研发多项目系统动态优化与实证研究
  • 批准号:
    72372008
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
基于凸优化的相控阵-天线罩系统一体化方向图高效综合方法研究
  • 批准号:
    62301379
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于健康和生态效益的大气污染物和CO2协同调控路径优化
  • 批准号:
    42307131
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于异步混合事件触发通信机制的自适应分布式优化控制研究
  • 批准号:
    62303096
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
野外环境下移动机器人基于复合地图的自主导航效能优化
  • 批准号:
    62303085
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 52.11万
  • 项目类别:
    Continuing Grant
CAREER: Explanation-based Optimization of Diversified Information Retrieval to Enhance AI Systems
职业:基于解释的多样化信息检索优化以增强人工智能系统
  • 批准号:
    2339932
  • 财政年份:
    2024
  • 资助金额:
    $ 52.11万
  • 项目类别:
    Continuing Grant
Mentoring the next generation of researchers at the intersection of opioid use disorder and chronic pain
指导下一代研究人员研究阿片类药物使用障碍和慢性疼痛的交叉点
  • 批准号:
    10663642
  • 财政年份:
    2023
  • 资助金额:
    $ 52.11万
  • 项目类别:
Optimization of Neurophysiologic Biomarkers for Rehabilitation Interventions in Veterans with Chronic Psychosis
慢性精神病退伍军人康复干预的神经生理学生物标志物的优化
  • 批准号:
    10753415
  • 财政年份:
    2023
  • 资助金额:
    $ 52.11万
  • 项目类别:
Enhanced Cervical Cancer Screening Adoption and Treatment Linkage for HIV positive Women in Kenya (eCASCADE-Kenya)
加强肯尼亚艾滋病毒阳性女性的宫颈癌筛查采用和治疗联系 (eCASCADE-Kenya)
  • 批准号:
    10738135
  • 财政年份:
    2023
  • 资助金额:
    $ 52.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了