NSF Convergence Accelerator Track J: Rapid detection technologies and decision-support systems to mitigate food supply chain threats

NSF 融合加速器轨道 J:缓解食品供应链威胁的快速检测技术和决策支持系统

基本信息

  • 批准号:
    2236622
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-12-15 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

Salmonella is one of the leading causes of foodborne illness in the U.S. and around the world, placing a higher burden on populations of lower socioeconomic status and underrepresented racial/ethnic groups. The total cost of illnesses due to Salmonella contamination in the U.S. alone was estimated to be greater than $10.69 billion in 2018. The goal of this project is to investigate multiple transformative sensing technologies for detecting Salmonella contamination along the poultry supply chain, leading to the development of a data-driven decision-support system to improve food safety, security, equity, efficiency, and resilience. By developing multi-sectoral partnerships with the poultry industry, retail markets, food banks, and local health departments, this project brings together a multidisciplinary group of researchers across five institutions to investigate and implement an integrated sensor-enabled food supply chain decision-support system for risk assessment and Salmonella mitigation to achieve system-wide equitable food safety and better health outcomes. This technology has the potential to be adapted for the detection of other foodborne pathogens in beef, pork, dairy, and green leaf products. It may also be applied to diagnose bacterial and viral infectious diseases in clinical settings.The application of the proposed technology will ensure equitable food security for local and global consumers and reduce the economic burden of foodborne diseases, especially for vulnerable and underprivileged populations who are facing higher food security risks. The research team will work alongside multisectoral partners to address the unique needs of disadvantaged populations in food nutrition, accessibility, and equity. This project will create research and training opportunities for students to learn about the convergence science approaches at the intersection of food science, public health, animal sciences, data science, and sensing technology. The team will expand engagement with under-represented populations by providing opportunities for student research experiences, engaging researchers, partnering with the industry workforce (e.g., including immigrant workers) and multi-sectoral stakeholders, and incorporating data about underrepresented groups into the proposed system.The proposed sensing technologies are unique in terms of multiplex/simultaneous, quantitative, and selective detection, and surveillance of Salmonella serovars at low concentrations within 30 minutes assay time. This can be accomplished by developing a Surface Enhanced Raman Spectroscopy (SERS) sensor on a side polished multimode optical fiber core, which is integrated into a 3-dimensional printed microstructure at a 15-degree angle to maximize the interaction of the excitation laser with the analytes, while the nanoantenna arrays will be created using low-cost microsphere photolithography. Salmonella antigens will be detected and quantified by measuring their vibrational fingerprint SERS spectra. The project will also integrate multiple innovative features of an impedance-based biosensor on the same chip to concentrate the viral antigen sample to a detectable threshold, capture, and detect the pathogens using arrays of electrodes coated with specific antibodies to enable simultaneous and selective detection of Salmonella serovars. Instead of timely and costly whole-genome sequencing, the nanopore-facilitated, multi-locus checkpoint sequencing sensor differentiates Salmonella serovars by rapid screening a panel of single-nucleotide-variation serotyping markers distributed in one or multi-locus. By combining results from samples throughout the end-to-end food supply chain and integrating the national population-level data, the system will populate a centralized data environment to develop visualization, prediction, and optimization capabilities for microbial risk assessment and mitigation with effective and timely data-driven decision support.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
沙门氏菌是美国和世界各地的食源性疾病的主要原因之一,给较低的社会经济地位和代表性不足的种族/种族群体带来了更高的负担。仅在美国,由于沙门氏菌污染而导致的疾病总成本估计在2018年大于106.9亿美元。该项目的目的是调查多种转化性传感技术,用于检测沿着家禽供应链的沙门氏菌污染,从而导致数据驱动的决策系统的开发,以提高食品安全,安全性,平等性,等级,效率,效率,效率,效率。通过与家禽行业,零售市场,食品银行和当地卫生部门建立多部门的合作伙伴关系,该项目汇集了五个机构的多学科研究人员小组,以调查和实施综合的传感器食品供应链决策决策系统,以进行风险评估,以降低风险评估,以实现System Fore Corecorpile Corepleable Foodsabil Foodsable Health utearsyscomes。该技术有可能适应牛肉,猪肉,乳制品和绿叶产品中其他食源性病原体的检测。它也可以应用于诊断临床环境中细菌和病毒感染性疾病的诊断。拟议技术的应用将确保对本地和全球消费者的公平粮食安全,并减少粮食生物疾病的经济负担,尤其是面临较高粮食安全风险的脆弱和弱势群体。研究团队将与多个部门合作伙伴一起工作,以满足食品营养,可及性和权益中处境不利的人群的独特需求。该项目将为学生创造研究和培训机会,以了解食品科学,公共卫生,动物科学,数据科学和传感技术的交汇处的融合科学方法。该团队将通过为学生研究经验提供机会,吸引研究人员,与行业劳动力合作(例如,包括移民工人)和多部门利益相关者合作,扩大与代表性不足的人群的参与,并将有关较低的群体的数据合并到拟议的系统中。在30分钟的测定时间内以低浓度的沙门氏菌血清射手。这可以通过在侧面抛光多模光纤芯上开发表面增强的拉曼光谱(SERS)传感器来实现,该光纤芯芯被以15度的无角度整合到3维的印刷微结构中,以最大程度地利用nanoantenna阵列来创建激发激光器与分析的相互作用。通过测量其振动指纹SERS光谱,将检测和量化沙门氏菌抗原。该项目还将在同一芯片上集成基于阻抗的生物传感器的多个创新特征,以将病毒抗原样品集中到可检测的阈值,捕获和检测病原体,并使用涂有特定抗体的电极阵列启用同时并选择性地检测咸浆液的抗体。通过快速筛选一组单个或多核分布的单核苷酸 - 核苷酸 - 核苷酸 - 核苷酸 - 核苷酸 - 核苷酸 - 核苷酸 - 核苷酸 - 核苷酸 - 核苷酸 - 核苷酸血清型标记,而不是及时且昂贵的全基因组测序,而是纳米相关的多层次检查点测序传感器可​​以区分沙门氏菌血清射手。通过结合整个端到端食品供应链中样品的结果并整合了国家人口水平的数据,该系统将填充集中的数据环境,以开发可视化,预测和微生物风险评估的优化能力,并有效,及时的数据驱动的决策支持NSF的法定任务和审查范围,这是通过评估的范围来表达的,这表明了这一奖项的范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mahmoud Almasri其他文献

Dynamic Decision-Making Process in the Opportunistic Spectrum Access
机会频谱接入中的动态决策过程
Reinforcement-Learning Based Handover Optimization for Cellular UAVs Connectivity
基于强化学习的蜂窝无人机连接切换优化
  • DOI:
    10.37394/232018.2022.10.12
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mahmoud Almasri;Xavier Marjou;Fanny Parzysz
  • 通讯作者:
    Fanny Parzysz
Total shoulder arthroplasty in patients aged 80 years and older: a systematic review
  • DOI:
    10.1016/j.jse.2023.08.003
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dennis A. DeBernardis;Ting Zhang;Andrew Duong;Cassie M. Fleckenstein;Mahmoud Almasri;Samer S. Hasan
  • 通讯作者:
    Samer S. Hasan
C-12: MEMS Coulter counters for dynamic impedance measurement of time sensitive cells
  • DOI:
    10.1016/j.cryobiol.2014.09.299
  • 发表时间:
    2014-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    James Benson;Yifan Wu;Mahmoud Almasri
  • 通讯作者:
    Mahmoud Almasri
Reverse shoulder arthroplasty in patients 85 years and older is safe, effective, and durable
  • DOI:
    10.1016/j.jse.2022.03.024
  • 发表时间:
    2022-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mahmoud Almasri;Brandon Kohrs;Cassie M. Fleckenstein;Joseph Nolan;Abby Wendt;Samer S. Hasan
  • 通讯作者:
    Samer S. Hasan

Mahmoud Almasri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mahmoud Almasri', 18)}}的其他基金

Convergence Accelerator Track J Phase 2: Rapid Detection Technologies and Decision-Support Systems for Safe, Equitable Food Systems
融合加速器轨道 J 第 2 阶段:安全、公平食品系统的快速检测技术和决策支持系统
  • 批准号:
    2344877
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Cooperative Agreement
I-Corps: Biosensors for Accurate and Rapid Detection of Pathogens
I-Corps:用于准确快速检测病原体的生物传感器
  • 批准号:
    1644071
  • 财政年份:
    2016
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Uncooled Silicon Germanium Oxide Microbolometers with Metasurface for Multispectral Infrared Imaging
用于多光谱红外成像的具有超表面的非冷却硅锗氧化物微测辐射热计
  • 批准号:
    1509589
  • 财政年份:
    2015
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
MEMS Capacitive Plates with Large Tunable Dynamic Range for Voltage Conversion and Power Harvesting
具有大可调动态范围的 MEMS 电容板,用于电压转换和功率收集
  • 批准号:
    0900727
  • 财政年份:
    2009
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Novel 3-Dimensional Biosensor for Rapid Detection and Accurate Identification of Salmonella in Food Products
用于快速检测和准确识别食品中沙门氏菌的新型三维生物传感器
  • 批准号:
    0925612
  • 财政年份:
    2009
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant

相似国自然基金

Landau方程和Vlasov-Poisson-Boltzmann方程组解的适定性和收敛率的研究
  • 批准号:
    12301284
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
椭圆方程约束最优控制问题自适应有限元算法的收敛性研究
  • 批准号:
    12301472
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Hamilton-Jacobi方程粘性解在扰动下的收敛性
  • 批准号:
    12301228
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向无线联邦学习的三层规划异步优化算法及收敛率研究
  • 批准号:
    12371519
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目
深度神经网络的收敛性理论
  • 批准号:
    12371103
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目

相似海外基金

NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
  • 批准号:
    2343806
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
  • 批准号:
    2344472
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
  • 批准号:
    2344476
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
  • 批准号:
    2344256
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了