NSF Convergence Accelerator Track I: Revolutionizing the manufacture of Portland cement concretes towards a circular and carbon-negative future

NSF 融合加速器轨道 I:彻底改变波特兰水泥混凝土的制造,迈向循环和负碳未来

基本信息

  • 批准号:
    2236331
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-12-15 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

Concrete is the most widely used construction material in the world. However, current production of ordinary Portland cement (OPC)-based concrete contributes to three main challenges that our society is facing today: climate change, resource depletion, and solid waste. This convergence research will establish a pathway to address all these challenges by leveraging the synergy of circular economy principles and a revolutionary manufacturing method of concrete which converts concrete into one of the largest sinks for CO2. Through a biomolecule-regulated carbonation (BioCarb) technology, this new manufacturing method transforms cement slurry into an effective CO2 absorbent, which can absorb and permanently store 25 to 50 times more CO2 in fresh concrete than existing technologies. More importantly, the compressive strength of the produced concrete can be drastically increased by in-situ produced nanoparticles. Similarly, calcium-rich industrial wastes – such as recycled concrete fines, steel slag, and coal ashes – can be converted into carbon-negative supplementary cementitious materials, which can substantially reduce the amount of OPC needed for concrete production. In addition, the functional biomolecules used in BioCarb will be extracted from agricultural waste, which provides a new solution to decarbonize chemical admixtures used in concrete. If successful, this project can unlock the enormous potential of concrete for permanent storage of CO2 as carbonate minerals and decarbonize all ingredients of concrete. As a result, the CO2 footprint of concrete will potentially be reduced by more than 50%. If the proposed technology is deployed at full scale, over 2 billion metric tons of CO2 can be reduced per year globally, and more than 3 billion metric tons of solid wastes can be converted into useful cementitious materials and aggregate every year and avoiding extraction of the same amounts of natural resources.Concrete can serve as a CO2 sink through mineralization processes, in which CO2 react with calcium-rich minerals in concrete to produce CaCO3 and permanently store CO2. However, key challenges including diffusion barriers and marginal strength improvement impede existing technologies to reach full potential of concrete for CO2 sequestration. To fully unlock this potential, we propose a breakthrough technology, BioCarb, to maximize CO2 uptake while n-situ produce nanoscale performance enhancers before concrete hardens. This is achieved by using a biomolecule as small-dose additive, which regulates the carbonation process of calcium-rich minerals through: i) chelating with calcium to facilitate the carbonation of the minerals, ii) controlling the crystal nucleation, orientation, size, and polymorph of calcium carbonate, and iii) enabling uniform dispersion of the produced CaCO3 nano- and micro-particles. As a result, much more CO2 can be absorbed by concrete directly without compromising performance. More importantly, the metastable CaCO3 produced through BioCarb can react with the cement to form new minerals or dissolve and re-precipitate to function as a binding phase in concrete. As a result, a novel calcium silicate hydrate-CaCO3 hybrid binder can form in the concrete, leading to improved mechanical strength, volumetric stability, and durability. Similarly, this process can be used to process other calcium-rich solid wastes and convert them into carbon-negative supplementary cementitious materials and aggregate for maximal substitution of cement and naturally extracted aggregate, respectively. This implies an even bigger potential for decarbonization. A convergent research approach is employed in this project to transit BioCarb into practical use, by fusing multiple disciplines – civil engineering, material science and engineering, environmental engineering, chemistry, food science and processing, and environmental justice – and the end uses of BioCarb and full life cycle considerations for the environmentally and economically sustainable production of concrete.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
混凝土是世界上使用最广泛的建筑材料。但是,目前的普通波特兰水泥(OPC)的混凝土生产为当今社会面临的三个主要挑战做出了贡献:气候变化,资源部署和固体废物。这项融合研究将通过利用循环经济原则的协同作用和一种革命性的混凝土制造方法来建立解决所有这些挑战的途径,该方法将混凝土转换为最大的二氧化碳水槽之一。通过生物分子调节的碳化(Biocarb)技术,这种新的制造方法将水泥浆变成有效的二氧化碳吸收剂,它可以吸收并永久地将新鲜混凝土中的二氧化碳多于现有技术多25至50倍。更重要的是,原位产生的纳米颗粒可以大大提高产生的混凝土的抗压强度。同样,富含钙的工业废物(例如可回收的混凝土罚款,钢渣和煤灰)可以转化为碳阴性辅助胶质材料,这可以大大减少混凝土生产所需的OPC量。此外,将从农业废物中提取用于生物质体的功能性生物分子,该废物提供了一种新的解决方案,用于混凝土中使用的化学混合物。如果成功的话,该项目可以释放混凝土在碳酸盐矿物质中永久存储二氧化碳的巨大潜力,并脱碳化混凝土的所有成分。结果,混凝土的二氧化碳足迹可能会降低50%以上。 If the proposed technology is deployed at full scale, over 2 billion metric tons of CO2 can be reduced per year globally, and more than 3 billion metric tons of solid wastes can be converted into useful cementitious materials and aggregate every year and avoiding extraction of the same amounts of natural resources.Concrete can serve as a CO2 sink through mineralization processes, in which CO2 react with calcium-rich minerals in concrete to produce CaCO3并永久存储二氧化碳。但是,主要挑战包括扩散障碍和边际强度改善阻碍了现有技术,以达到混凝土的全部潜力来进行二氧化碳隔离。为了充分发挥这种潜力,我们提出了一种突破性的技术BioCarb,以最大程度地吸收CO2,而N-Situ在混凝土硬化之前生产纳米级性能增强剂。这是通过将生物分子作为小剂量添加剂来实现的,该添加剂可以通过以下方式调节富含钙的矿物质的碳化过程:i)用钙螯合以促进矿物质的碳化,ii)控制晶体核,方向,方向,碳酸盐和脑电图的碳酸盐,以及III II III III)构成形式的构成型构成形式的分配。结果,可以直接通过混凝土吸收更多的二氧化碳,而不会损害性能。更重要的是,通过生物粒子产生的亚稳态CaCO3可以与水泥反应形成新的矿物质,或者溶解和重新屈服以充当混凝土中的结合阶段。结果,新型的硅钙水合物-CACO3杂化粘合剂可以在混凝土中形成,从而提高机械强度,体积稳定性和耐用性。同样,此过程可用于处理其他富含钙的固体废物,并将其转换为碳阴性辅助水泥材料,并分别用于最大程度地取代水泥和自然提取的骨料。这意味着更大的脱碳潜力。该项目在该项目中采取了收敛的研究方法,以通过融合多个学科(通过土木工程,材料科学和工程,环境工程,化学,化学,食品科学和加工以及环境正义)来融合多个学科,以及生物棕榈的最终用途,以及对环境和经济上的批准和经济可持续的批准的奖励,以反映了Contection。基金会的智力优点和更广泛的影响评论标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jialai Wang其他文献

Delamination of layered structures on elastic foundation
  • DOI:
    10.1016/j.engfracmech.2011.01.005
  • 发表时间:
    2011-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Chao Zhang;Jialai Wang
  • 通讯作者:
    Jialai Wang
A clean dispersant for nano-silica to enhance the performance of cement mortars
纳米二氧化硅清洁分散剂,可增强水泥砂浆的性能
  • DOI:
    10.1016/j.jclepro.2022.133647
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xin Qian;Jialai Wang;Liang Wang;Yi Fang;Peiyuan Chen;Mengxiao Li
  • 通讯作者:
    Mengxiao Li
Cohesive zone model of FRP-concrete interface debonding under mixed-mode loading
Eco-friendly treatment of carbon nanofibers in cementitious materials for better performance
水泥材料中碳纳米纤维的环保处理以获得更好的性能
  • DOI:
    10.1016/j.cscm.2022.e01126
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Xin Qian;Heng Yang;Jialai Wang;Yi Fang;Mengxiao Li
  • 通讯作者:
    Mengxiao Li
Tapered beam on elastic foundation model for compliance rate change of TDCB specimen
TDCB试件达标率变化弹性地基模型上的锥形梁
  • DOI:
    10.1016/s0013-7944(02)00023-1
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    P. Qiao;Jialai Wang;J. Davalos
  • 通讯作者:
    J. Davalos

Jialai Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jialai Wang', 18)}}的其他基金

I-Corps: Microencapsulation of phase change materials using cenospheres for thermal energy efficiency in building materials
I-Corps:使用空心微珠对相变材料进行微封装,以提高建筑材料的热能效率
  • 批准号:
    2118493
  • 财政年份:
    2021
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: In-situ Production of Calcium Carbonate Nanoparticles in Fresh Concrete
合作研究:新拌混凝土中碳酸钙纳米颗粒的原位生产
  • 批准号:
    1761672
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: Multifunctional Structural Panel for Energy Efficiency and Multi-Hazards Mitigation
合作研究:用于提高能源效率和减轻多种危害的多功能结构面板
  • 批准号:
    1563551
  • 财政年份:
    2016
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: Geopolymeric Nanocomposite, A Next Generation Material For Infrastructure Sustainability
合作研究:地聚合物纳米复合材料,用于基础设施可持续性的下一代材料
  • 批准号:
    1000580
  • 财政年份:
    2010
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Characterization of Environment-Assisted Subcritical Debond of Bonded Repairs/Strengthening of Aging Infrastructure
老化基础设施保税维修/加固的环境辅助亚临界脱粘特性
  • 批准号:
    0927938
  • 财政年份:
    2009
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant

相似国自然基金

Landau方程和Vlasov-Poisson-Boltzmann方程组解的适定性和收敛率的研究
  • 批准号:
    12301284
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
椭圆方程约束最优控制问题自适应有限元算法的收敛性研究
  • 批准号:
    12301472
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Hamilton-Jacobi方程粘性解在扰动下的收敛性
  • 批准号:
    12301228
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向无线联邦学习的三层规划异步优化算法及收敛率研究
  • 批准号:
    12371519
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目
深度神经网络的收敛性理论
  • 批准号:
    12371103
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目

相似海外基金

NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
  • 批准号:
    2343806
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
  • 批准号:
    2344472
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
  • 批准号:
    2344476
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
  • 批准号:
    2344256
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了