NSF-DFG Confine: Plasma-Catalysis in Confined Spaces for Cold Start NOx Abatement in Automotive Exhaust

NSF-DFG Confine:密闭空间中的等离子体催化用于冷启动汽车尾气中的氮氧化物减排

基本信息

  • 批准号:
    2234270
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

This project seeks to transform traditional chemical processing to ensure a sustainable future. Catalysis, which facilitates desired chemical reactions, has played a key role in defining the modern standard of pollution abatement, high-energy density fuels, and proficient and safe fuels and fertilizers. This project aims to develop an understanding of new concepts in the practice of chemical catalysis enabled by coupling of non-equilibrium plasma with surface catalyzed reactions. NOx abatement in capillary microreactors, mimicking “honeycomb monoliths” in modern-day catalytic converters, at near ambient temperatures serve as a testbed system. Tailpipe emissions in transportation account for a majority of NOx pollution harming human health and the environment. State-of-the-art automobile exhaust after-treatment systems remediate NOx efficiently above a threshold light-off temperature 473 K (200 degrees C), sufficient to overcome kinetic limitations inherent in catalytic processes. The project harnesses interactions among plasma chemistry and thermocatalytic processes in confined geometries to enable NOx reduction in automobiles at near ambient temperatures. This addresses “cold start” automotive emissions during engine warm up, which account for 80% of NOx vehicular pollution. This project furthers US-German scientific collaboration and training in STEM.Plasma chemistry occurs volumetrically and involves short-lived reactive intermediates—ions, radicals, electronically- and vibrationally-excited species—which when impinged on a selective catalytic surface could effect chemical transformations and pathways inaccessible to conventional catalysis. The disparity in reaction timescales of plasma (sub-10^-6 to 10 s) and catalytic chemistry (10^-1 to 10 s) and the different length scales for plasma (volume) and catalytic (surface) chemistry implies that effective coupling between plasma and surface catalytic chemistry can only be achieved if surface-to-volume ratios are large to enable a high flux of short-lived plasma-derived intermediates to the catalyst surface. Hence, confinement, enabling very high surface-to-volume ratios, is key to coupling volumetric and fast plasma chemistry with selective, slower surface-based catalytic processes. The project combines reactor design, advanced spectroscopic and spectrometric diagnostics, and multiscale modeling to examine reaction and transport phenomena impacting plasma-catalytic chemistry coupling in confined reaction environments. This includes (1) probing characteristic diffusion time scales and lifetimes of reactive species in combined operation of plasma- and thermocatalytic processes within capillary microreactors, (2) developing spectroscopic and spectrometric tools to identify and enumerate short-lived reactive intermediates in the gas phase and on catalyst surfaces and (3) developing multiscale models describing the underpinning processes in these confined reaction environments. This will allow to elucidate how reaction and transport phenomena impact plasma-catalytical coupling and describe new catalytic species and pathways for NOx reduction. This project was awarded through the “Chemistry and Transport in Confined Spaces (NSF-DFG Confine)" opportunity, a collaborative solicitation that involves the National Science Foundation and Deutsche Forschungsgemeinschaft (DFG).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在改变传统的化学加工,以确保可持续的未来。设施渴望化学反应的催化在定义现代污染,高能密度燃料以及熟练且安全的燃料和肥料方面发挥了关键作用。该项目旨在通过将非平衡等离子体与表面催化的反应耦合,在化学催化实践中发展对新概念的理解。毛细管微反应器中的NOx减排,模仿现代催化转化器中的“蜂窝主”,在近乎环境温度下用作测试台系统。运输中的尾管排放占大部分NOX污染,损害了人类健康和环境。最先进的汽车排气后处理系统有效地补充NOX在阈值轻度温度473 K(200摄氏度)上,足以克服催化过程中固有的动力学限制。该项目利用了限制几何形状的血浆化学和热催化过程之间的相互作用,以使近乎环境温度下汽车的NOx降低。该地址在发动机热身过程中“冷启动”汽车排放量,占NOX车辆污染的80%。该项目进一步推进了美国 - 德国的科学合作和STEM中的培训。播出化学发生大量发生,并涉及短暂的反应性中间体 - 离子,激进分子,电子和振动的兴奋物种,当在选择性催化表面上会损害这种化学转化和途径在常规式cata catalsas上,这些物种会影响化学转化和途径。血浆(sub-10^-6至10 s)的反应时间尺度以及血浆(体积)和催化(表面)化学的不同长度尺度的差异意味着,只有在表面上的效能率很大才能启用短效率的短效率,才能实现血浆和表面催化化学之间的有效耦合。因此,限制,实现非常高的表面体积比,是将体积和快速等离子体化学与选择性较慢的基于表面的催化过程耦合的关键。该项目结合了反应堆设计,晚期光谱和光谱诊断,以及多尺度建模,以检查在密闭反应环境中影响血浆催化化学偶联的反应和转运现象。这包括(1)在毛细管微反应器内的血浆和热催化过程的合并操作中,(2)开发光谱和光谱工具,以识别和枚举短期反应性中间体的多种反应环境(3),探测型和光谱的反应中的多个次数(3),探测特征性物种的探测特征扩散时间尺度和反应性物种的寿命。这将允许阐明反应和转运现象如何影响等离子体催化的耦合,并描述新的催化物种和NOX还原的途径。该项目是通过“封闭空间中的化学和运输(NSF-DFG限制)”的机会授予的,这是一个合作的招标,涉及国家科学基金会和德意志Forschungsgemeinschaft(DFG)。这项奖项反映了NSF的法定任务,并通过评估了CREDIRER IFFICTIAL IFFICTIAL IFFICTIAN MERITAIL和FRODIARIAL和FRODIAL和FRODIAL和FRODIAL和FRODIAL和FORGIATIAL和FRODIAL and FRODIAL和FRODIARIAL和FRODIARIAL和FRODIARIAL和FORGIARIAL和FRODIARIARIAL和FRODIARIAL和FORGIAL。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Bruggeman其他文献

Absolute OH density measurements in an atmospheric pressure dc glow discharge in air with water electrode by broadband UV absorption spectroscopy
通过宽带紫外吸收光谱法利用水电极测量空气中大气压直流辉光放电中的绝对 OH 密度
  • DOI:
    10.1088/0022-3727/48/42/424008
  • 发表时间:
    2015-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qing Xiong;Zhiqiang Yang;Peter Bruggeman
  • 通讯作者:
    Peter Bruggeman
Development of a Chronic Wound Healing Device
慢性伤口愈合装置的开发
Rapid carbon-free iron ore reduction using an atmospheric pressure hydrogen microwave plasma
  • DOI:
    10.1016/j.cej.2023.145025
  • 发表时间:
    2023-09-15
  • 期刊:
  • 影响因子:
  • 作者:
    Sachin Kumar;Zichang Xiong;Julian Held;Peter Bruggeman;Uwe R. Kortshagen
  • 通讯作者:
    Uwe R. Kortshagen
Plasma characteristics and electrical breakdown between metal and water electrodes
金属和水电极之间的等离子体特性和电击穿
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Bruggeman;E. Ribežl;J. Degroote;J. Vierendeels;C. Leys
  • 通讯作者:
    C. Leys

Peter Bruggeman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Bruggeman', 18)}}的其他基金

Collaborative Research: ECO-CBET: Plasma-Assisted Dehalogenation of Persistent Halogen-Containing Waste Streams
合作研究:ECO-CBET:持久性含卤素废物流的等离子体辅助脱卤
  • 批准号:
    2318493
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
GCR: Collaborative Research: Plasma-Biofilm Interactions at the Intersection of Physics, Chemistry, Biology and Engineering
GCR:合作研究:物理、化学、生物学和工程学交叉点的等离子体-生物膜相互作用
  • 批准号:
    2020695
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Plasma-Liquid Interactions Through Controlled Plasma-Microdroplet Experiments and Modeling
合作研究:通过受控等离子体-微滴实验和建模了解等离子体-液体相互作用
  • 批准号:
    1903151
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
2018 Plasma Processing Science: Fundamental Insights in Plasma Processes
2018 等离子体加工科学:等离子体工艺的基本见解
  • 批准号:
    1824150
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Mechanistic origins of synergetic effects in plasma catalysis
合作研究:SusChEM:等离子体催化协同效应的机制起源
  • 批准号:
    1703439
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
2016 Plasma Processing Science: Plasmas with Complex Interactions: Exploiting the Non-Equilibrium.
2016 等离子体处理科学:具有复杂相互作用的等离子体:利用非平衡。
  • 批准号:
    1615381
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Unraveling the Unique Properties of Transient Discharges in Bubbles and Liquid Water
揭示气泡和液态水中瞬态放电的独特性质
  • 批准号:
    1500135
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

基于光纤激光的DFG红外频率梳光源关键问题的研究
  • 批准号:
    61250017
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
基于可编程光纤激光器与有机非线性晶体的光纤太赫兹融合系统研究
  • 批准号:
    61107087
  • 批准年份:
    2011
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目
基于DFG-out型VEGFR/FGFR双重抑制剂的设计、合成及血管生成抑制活性的研究
  • 批准号:
    21172265
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
可调谐单频中红外激光器和生物气体同位素的检测研究
  • 批准号:
    60878063
  • 批准年份:
    2008
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
40Gbit/s高速全光码型转换的新机理和新技术研究
  • 批准号:
    60577006
  • 批准年份:
    2005
  • 资助金额:
    7.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-DFG Confine: Spin-Probe-Enabled Sensing of Fluids in Confined Geometries and Interfaces
NSF-DFG Confine:利用自旋探针对受限几何形状和界面中的流体进行传感
  • 批准号:
    2223461
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-DFG: Confine: Sculpting Confined Fluids for Transport using Self-Organization and Information Transfer
合作研究:NSF-DFG:限制:利用自组织和信息传输塑造受限流体以进行运输
  • 批准号:
    2234135
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
NSF-DFG Confine: Reacting precursor/solvent microdroplets in confined 2-D microflows for tailored nanomaterials synthesis
NSF-DFG Confine:在受限的二维微流中反应前体/溶剂微滴,以实现定制的纳米材料合成
  • 批准号:
    2234283
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
NSF-DFG Confine: Drying-induced assembly of colloidal supraparticles from anisotropic nanoparticles
NSF-DFG Confine:干燥诱导各向异性纳米粒子组装胶体超粒子
  • 批准号:
    2223084
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
NSF-DFG Confine: Structure, dynamics, and electrochemical stability of concentrated electrolytes in confined spaces
NSF-DFG Confine:受限空间中浓电解质的结构、动力学和电化学稳定性
  • 批准号:
    2223407
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了