Unraveling the Unique Properties of Transient Discharges in Bubbles and Liquid Water

揭示气泡和液态水中瞬态放电的独特性质

基本信息

  • 批准号:
    1500135
  • 负责人:
  • 金额:
    $ 34.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

This project is focused on the understanding of the production of reactive species when plasmas interact with liquids. Plasmas in and in contact with liquids are one of the most exciting and important intellectual frontiers in plasma science, with broad potential applications ranging from environmental remediation and green chemistry to biomedical applications. The complex interaction of plasmas with liquids offers a rich source of short-lived chemically reactive species, many of which are critical for chemical and biological applications. Plasmas are often considered to be an advanced oxidation technology for liquid waste treatment and also have great promise in the destruction of pharmaceuticals in drinking water. The presence of these pharmaceuticals in the water supply is an increasing public concern and for several cases no alternative technologies exist to remove them from drinking water. In addition, plasmas in liquids can be used for environmentally friendly chemical synthesis of hydrogen peroxide, hydrogen and even nanoparticles. Producing hydrogen and hydrogen peroxide from water with better energy efficiency than electrolysis or other chemical processes would be a major step forward. The nanoparticles in the context of advanced material science could also strongly affect energy research that increasingly uses complex nanostructured materials. Since energy efficiency is often a bottleneck for applications of plasmas in liquids, a better understanding of the reactive species production in these plasmas is the necessary step to lead to a breakthrough in technologies based on plasmas in liquids. To date, progress in the field of plasmas in liquids has been hindered by the lack of quantitative correlations between plasma properties and the plasma induced liquid phase chemistry. The key idea of this project is to generate a non-equilibrium plasma filament in liquid water by a nanosecond pulsed high voltage supply in a needle-needle electrode geometry. This offers an excellent control of the plasma dynamics and allows detailed investigation of a stabilized plasma filament. The short-lived reactive species production mechanisms will be investigated both temporally and spatially resolved by a combination of advanced laser diagnostics. In addition, plasma induced liquid reactivity will be measured and a direct link between plasma chemistry and liquid phase chemistry will be established. This is expected to lead to the necessary knowledge for optimizing and establishing many promising applications as stated above. This project enables education of students and a post-doctoral researcher in the cross-disciplinary field of plasma engineering. The outcomes of this work will be used to extend an existing graduate course on Plasma Technology to cover non-equilibrium liquid phase plasmas including laboratory demonstrations. Within the framework of the project, collaboration with the Science Museum of Minnesota will be initiated to establish an exhibit about plasmas.
该项目的重点是了解等离子体与液体相互作用时活性物质的产生。 液体中或与液体接触的等离子体是等离子体科学中最令人兴奋和最重要的知识前沿之一,具有广泛的潜在应用,从环境修复、绿色化学到生物医学应用。等离子体与液体的复杂相互作用提供了丰富的短寿命化学活性物质来源,其中许多对于化学和生物应用至关重要。等离子体通常被认为是一种用于液体废物处理的高级氧化技术,并且在销毁饮用水中的药物方面也具有巨大的前景。供水系统中这些药物的存在日益受到公众关注,在某些情况下,不存在替代技术可以将它们从饮用水中去除。此外,液体等离子体可用于过氧化氢、氢气甚至纳米颗粒的环保化学合成。与电解或其他化学过程相比,以更高的能源效率从水中生产氢气和过氧化氢将是向前迈出的一大步。 先进材料科学背景下的纳米颗粒也可能强烈影响越来越多地使用复杂纳米结构材料的能源研究。由于能源效率通常是液体等离子体应用的瓶颈,因此更好地了解这些等离子体中的活性物质产生是实现基于液体等离子体的技术突破的必要步骤。迄今为止,由于等离子体性质与等离子体诱导的液相化学之间缺乏定量相关性,液体等离子体领域的进展受到阻碍。该项目的关键思想是通过针针电极几何结构中的纳秒脉冲高压电源在液态水中产生非平衡等离子体灯丝。这提供了对等离子体动力学的出色控制,并允许对稳定的等离子体灯丝进行详细研究。将通过结合先进的激光诊断技术在时间和空间上解决短寿命活性物质的产生机制。此外,还将测量等离子体诱导的液体反应性,并建立等离子体化学和液相化学之间的直接联系。预计这将为优化和建立如上所述的许多有前途的应用程序带来必要的知识。 该项目能够对等离子体工程跨学科领域的学生和博士后研究员进行教育。这项工作的成果将用于扩展现有的等离子体技术研究生课程,以涵盖非平衡液相等离子体,包括实验室演示。在该项目框架内,将启动与明尼苏达科学博物馆的合作,举办有关等离子体的展览。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Bruggeman其他文献

Absolute OH density measurements in an atmospheric pressure dc glow discharge in air with water electrode by broadband UV absorption spectroscopy
通过宽带紫外吸收光谱法利用水电极测量空气中大气压直流辉光放电中的绝对 OH 密度
  • DOI:
    10.1088/0022-3727/48/42/424008
  • 发表时间:
    2015-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qing Xiong;Zhiqiang Yang;Peter Bruggeman
  • 通讯作者:
    Peter Bruggeman
Development of a Chronic Wound Healing Device
慢性伤口愈合装置的开发
Plasma characteristics and electrical breakdown between metal and water electrodes
金属和水电极之间的等离子体特性和电击穿
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Bruggeman;E. Ribežl;J. Degroote;J. Vierendeels;C. Leys
  • 通讯作者:
    C. Leys

Peter Bruggeman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Bruggeman', 18)}}的其他基金

Collaborative Research: ECO-CBET: Plasma-Assisted Dehalogenation of Persistent Halogen-Containing Waste Streams
合作研究:ECO-CBET:持久性含卤素废物流的等离子体辅助脱卤
  • 批准号:
    2318493
  • 财政年份:
    2023
  • 资助金额:
    $ 34.2万
  • 项目类别:
    Standard Grant
NSF-DFG Confine: Plasma-Catalysis in Confined Spaces for Cold Start NOx Abatement in Automotive Exhaust
NSF-DFG Confine:密闭空间中的等离子体催化用于冷启动汽车尾气中的氮氧化物减排
  • 批准号:
    2234270
  • 财政年份:
    2023
  • 资助金额:
    $ 34.2万
  • 项目类别:
    Standard Grant
GCR: Collaborative Research: Plasma-Biofilm Interactions at the Intersection of Physics, Chemistry, Biology and Engineering
GCR:合作研究:物理、化学、生物学和工程学交叉点的等离子体-生物膜相互作用
  • 批准号:
    2020695
  • 财政年份:
    2020
  • 资助金额:
    $ 34.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Plasma-Liquid Interactions Through Controlled Plasma-Microdroplet Experiments and Modeling
合作研究:通过受控等离子体-微滴实验和建模了解等离子体-液体相互作用
  • 批准号:
    1903151
  • 财政年份:
    2019
  • 资助金额:
    $ 34.2万
  • 项目类别:
    Standard Grant
2018 Plasma Processing Science: Fundamental Insights in Plasma Processes
2018 等离子体加工科学:等离子体工艺的基本见解
  • 批准号:
    1824150
  • 财政年份:
    2018
  • 资助金额:
    $ 34.2万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Mechanistic origins of synergetic effects in plasma catalysis
合作研究:SusChEM:等离子体催化协同效应的机制起源
  • 批准号:
    1703439
  • 财政年份:
    2017
  • 资助金额:
    $ 34.2万
  • 项目类别:
    Standard Grant
2016 Plasma Processing Science: Plasmas with Complex Interactions: Exploiting the Non-Equilibrium.
2016 等离子体处理科学:具有复杂相互作用的等离子体:利用非平衡。
  • 批准号:
    1615381
  • 财政年份:
    2016
  • 资助金额:
    $ 34.2万
  • 项目类别:
    Standard Grant

相似国自然基金

交替共聚物自组装行为的独特性
  • 批准号:
    22231007
  • 批准年份:
    2022
  • 资助金额:
    280 万元
  • 项目类别:
中国人口转变的独特性、经济影响及政策研究
  • 批准号:
    72141310
  • 批准年份:
    2021
  • 资助金额:
    200 万元
  • 项目类别:
    专项基金项目
高温下铜改性双笼型分子筛对NH3选择性催化反应及抗SO2中毒的独特性能研究
  • 批准号:
    22176006
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
河马科独特性状及其半水生适应性进化机制的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
新遗传元件在反刍动物及其独特性状进化中的作用和机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    312 万元
  • 项目类别:
    重点项目

相似海外基金

Understanding of physical properties on carbon networks with unique geometric structures
了解具有独特几何结构的碳网络的物理特性
  • 批准号:
    23K17661
  • 财政年份:
    2023
  • 资助金额:
    $ 34.2万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
HEOM: High entropy oxides: understanding their unique properties and dynamics using machine learning interatomic potentials
HEOM:高熵氧化物:使用机器学习原子间势了解其独特的性质和动力学
  • 批准号:
    EP/X034429/1
  • 财政年份:
    2023
  • 资助金额:
    $ 34.2万
  • 项目类别:
    Fellowship
Understanding the unique properties of the Sin3A histone deacetylase complex in transcription and cell viability
了解 Sin3A 组蛋白脱乙酰酶复合物在转录和细胞活力方面的独特特性
  • 批准号:
    MR/W00190X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 34.2万
  • 项目类别:
    Research Grant
Novel properties of two-dimensional electrons at the unique (111) interface in perovskite oxides
钙钛矿氧化物中独特(111)界面二维电子的新特性
  • 批准号:
    22K14001
  • 财政年份:
    2022
  • 资助金额:
    $ 34.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Bioclad - Development of an innovative, carbon-neutral, passive green wall solution that leverages the unique properties of moss for superior air pollution absorption
Bioclad - 开发创新、碳中和、被动式绿墙解决方案,利用苔藓的独特特性实现卓越的空气污染吸收
  • 批准号:
    10030185
  • 财政年份:
    2022
  • 资助金额:
    $ 34.2万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了