CIF: Small: Interpretable Machine Learning based on Deep Neural Networks: A Source Coding Perspective
CIF:小:基于深度神经网络的可解释机器学习:源编码视角
基本信息
- 批准号:2205004
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Deep neural networks (DNN) have become a core technology for building artificial intelligence (AI) systems, with numerous applications in critical domains such as manufacturing and medicine. Despite the phenomenal success of such networks, their usage has met resistance in many mission-critical tasks because it is difficult to explain the prediction model generated by the computer. For example, in some applications in public health and medicine, because only interpretable models are acceptable, users have stuck with classic machine-learning methods, which are often not as accurate as DNN models. Moreover, increased transparency in AI systems makes human inspection possible, a necessary trait for studying social justice and equity in AI. This project aims to develop theory, methods, and applications to achieve interpretability for machine-learning models based on DNN. Advancement in this project will broaden the usage of DNN in science, engineering, and industry, further unleashing its power. Besides developing fundamental methodologies, the investigators will advance the application area of automated emotion recognition. The ability to recognize and quantify emotion can help psychologists and clinical workers notice extreme distress and potential danger to oneself and others. Through this project, the research team will develop software packages for public access, graduate and undergraduate students will be trained to conduct interdisciplinary research, and the faculty members of the team will integrate the research results into their teaching activities.Although various post-hoc methods have been developed to interpret the decision of DNNs, the explanation is often unstable and highly localized by construction. More importantly, the explanation model exists in separation from the prediction model, whose high complexity remains despite the explanation. In this project, inspired by source coding, the investigators will draw an analogy between explaining a complex model and transmitting signals with a limited channel capacity. Similar to vector quantization to enable data transmission at an allowable rate, the prediction mapping is quantized so that the prediction can be described at a desired level of interpretability. To formalize the idea, the investigators propose a mixture of discriminative models, trained as an embedded part of a neural network. Function approximation theory will be developed for interpretable models based on neural networks. Besides testing and evaluating the proposed framework using benchmark datasets, such as images, videos, text, and biomedical data, the investigators will explore in greater depth the application for emotion recognition based on body movements and, in collaboration with psychology researchers, evaluate the insight gained from interpreting the prediction model.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络(DNN)已成为构建人工智能(AI)系统的核心技术,在制造和医学等关键领域有着广泛的应用。尽管此类网络取得了巨大的成功,但它们的使用在许多关键任务中遇到了阻力,因为很难解释计算机生成的预测模型。例如,在公共卫生和医学领域的某些应用中,由于只有可解释的模型才是可接受的,因此用户一直坚持使用经典的机器学习方法,而这些方法通常不如 DNN 模型准确。此外,人工智能系统透明度的提高使得人工检查成为可能,这是研究人工智能社会正义和公平的必要特征。该项目旨在开发理论、方法和应用,以实现基于 DNN 的机器学习模型的可解释性。该项目的进展将扩大 DNN 在科学、工程和工业领域的应用,进一步释放其力量。除了开发基本方法之外,研究人员还将推进自动情绪识别的应用领域。识别和量化情绪的能力可以帮助心理学家和临床工作者注意到对自己和他人的极度痛苦和潜在危险。通过这个项目,研究团队将开发可供公众访问的软件包,培养研究生和本科生进行跨学科研究,团队教师将研究成果融入到他们的教学活动中。尽管各种事后方法虽然已经被开发来解释 DNN 的决策,但这种解释通常是不稳定的,并且通过构建而高度局部化。更重要的是,解释模型与预测模型分离存在,尽管有解释,预测模型仍然具有很高的复杂性。在这个项目中,受源编码的启发,研究人员将在解释复杂模型和以有限的信道容量传输信号之间进行类比。与使数据能够以允许的速率传输的矢量量化类似,预测映射被量化,以便可以以期望的可解释性水平来描述预测。为了形式化这个想法,研究人员提出了一种混合判别模型,作为神经网络的嵌入部分进行训练。函数逼近理论将被开发用于基于神经网络的可解释模型。除了使用图像、视频、文本和生物医学数据等基准数据集测试和评估所提出的框架外,研究人员还将更深入地探索基于身体运动的情绪识别的应用,并与心理学研究人员合作,评估洞察力通过解释预测模型获得的奖项。该奖项反映了 NSF 的法定使命,并且通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unlocking the Emotional World of Visual Media: An Overview of the Science, Research, and Impact of Understanding Emotion
解锁视觉媒体的情感世界:理解情感的科学、研究和影响概述
- DOI:10.1109/jproc.2023.3273517
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:James Ze Wang;Sicheng Zhao;Chenyan Wu;Reginald B. Adams;M. Newman;T. Shafir;Rachelle Tsachor
- 通讯作者:Rachelle Tsachor
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jia Li其他文献
Determining the trophic linkage of the red-crowned crane Grus japonensis in Zhalong wetland in northeastern China
东北扎龙湿地丹顶鹤的营养关系确定
- DOI:
10.1515/biolog-2017-0164 - 发表时间:
2017-12-20 - 期刊:
- 影响因子:1.5
- 作者:
Jinming Luo;Jia Li;Xiaohua Li;Lin Bai;Yongjie Wang;D. Zheng - 通讯作者:
D. Zheng
Natural Response Generation for Chinese Reading Comprehension
中文阅读理解的自然反应生成
- DOI:
10.48550/arxiv.2302.08817 - 发表时间:
2023-02-17 - 期刊:
- 影响因子:0
- 作者:
Nuo Chen;Hongguang Li;Yinan Bao;Baoyuan Wang;Jia Li - 通讯作者:
Jia Li
Development and analysis of pH-sensitive surfactants for enhancing foam drainage gas retrieval
用于增强泡沫排水气体回收的 pH 敏感表面活性剂的开发和分析
- DOI:
10.1016/j.molliq.2024.124106 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:6
- 作者:
Jia Li;Ming Wen;Lei Lei;Cheng Fu;Zeyin Jiang - 通讯作者:
Zeyin Jiang
Solid-state reaction synthesis for mixed-phase Eu3+-doped bismuth molybdate and its luminescence properties
混合相Eu3掺杂钼酸铋的固相反应合成及其发光性能
- DOI:
10.1142/s0217984917502414 - 发表时间:
2017-09-20 - 期刊:
- 影响因子:1.9
- 作者:
Danyang Liang;Yu Ding;Nan Wang;Xiaomeng Cai;Jia Li;Linyu Han;Shiqi Wang;Yuanyuan Han;Guang Jia;Liyong Wang - 通讯作者:
Liyong Wang
Herpes Simplex Virus Type 1 ICP0 Protein Does Not Accumulate in the Nucleus of Primary Neurons in Culture
单纯疱疹病毒 1 型 ICP0 蛋白不会在培养的原代神经元细胞核中积累
- DOI:
10.1128/jvi.74.21.10132-10141.2000 - 发表时间:
2000-11-01 - 期刊:
- 影响因子:5.4
- 作者:
Xiao;Jia Li;M. Mata;J. Goss;D. Wolfe;J. Glorioso;D. Fink - 通讯作者:
D. Fink
Jia Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jia Li', 18)}}的其他基金
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CAREER: studying superconductivity and ferromagnetism in 2D material heterostructures with flat energy band
职业:研究具有平坦能带的二维材料异质结构中的超导性和铁磁性
- 批准号:
2143384 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Cluster Analysis for High-Dimensional and Multi-Source Data
高维多源数据聚类分析
- 批准号:
2013905 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Statistical Learning for Image Annotation
图像标注的统计学习
- 批准号:
1521092 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
EAGER-DynamicData: Generative Statistical Modeling for Dynamic and Distributed Data
EAGER-DynamicData:动态和分布式数据的生成统计建模
- 批准号:
1462230 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Parametric and nonparametric regressions on spot volatility
现货波动率的参数和非参数回归
- 批准号:
1326819 - 财政年份:2013
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Estimation and Inference Methods for Continuous-Time Models
连续时间模型的估计和推理方法
- 批准号:
1227448 - 财政年份:2012
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Modeling of Mosquitoes Carrying Transgenes or Genetically Modified Bacteria in Preventing the Transmission of Mosquito-Borne Diseases
携带转基因或转基因细菌的蚊子模型以预防蚊媒疾病的传播
- 批准号:
1118150 - 财政年份:2011
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
The Second International Conference on Mathematical Modeling and Analysis of Populations in Biological Systems; October 2009; Huntsville, Alabama
第二届生物系统群体数学建模与分析国际会议;
- 批准号:
0931213 - 财政年份:2009
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
- 批准号:82301557
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
- 批准号:82372852
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
- 批准号:82305399
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
- 批准号:82373364
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
- 批准号:
2343869 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Leveraging remote blood pressure monitoring and interpretable machine learning to improve clinical workflows for hypertensive disorders of pregnancy
利用远程血压监测和可解释的机器学习来改善妊娠期高血压疾病的临床工作流程
- 批准号:
10822625 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
- 批准号:
2153606 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
- 批准号:
2153607 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Mechanism-guided drug repurposing for host-directed therapy of infectious diseases using interpretable and integrative ML
使用可解释和集成的机器学习机制引导的药物再利用,用于针对宿主的传染病治疗
- 批准号:
10619589 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别: