Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
基本信息
- 批准号:2227459
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nontechnical description: This project aims to design and demonstrate a sensing platform which incorporates recent advances in both electrical trapping and integration of optical circuits for rapid concentrating, sorting, and analysis of biological nanoparticles. Viruses and cellular fragments extracted from liquid samples of a patient (e.g., urine, blood, etc.) contain abundant diagnostic information which can be used to detect and treat many diseases. However, detecting a specific target bioparticle from a mixture of many other particles in the sample complicates diagnostics. Current methods for isolating the targe bioparticles often require time-consuming processes such as multiple filtering or centrifugation stages, followed by amplification. Therefore, an active biosensor which rapidly sorts, traps, and detects bioparticles based on their size and physical properties would have significant impact on the field of biosensing and medical diagnostics. Mass producing such sensors could reduce the complexity, cost, and delay for patients undergoing medical diagnostic tests. This project also provides mentoring and outreach opportunities for undergraduate and high school students who are underrepresented in STEM fields.Technical description: This project will develop a biosensor which can sort, trap, and detect extracellular vesicles (EVs) and viral specimens by combining highly confined evanescent field excitation from visible waveguides with dielectrophoretic (DEP) trapping using atomically sharp graphene electrodes. To demonstrate this Waveguide-Integrated Graphene Nano-tweezERs (or “WIGNER”) platform, the team will: 1) combine transparent DEP graphene electrodes and silicon nitride photonic waveguides; 2) integrate microfluidics for efficient aqueous nanovesicle sorting and trapping; and 3) demonstrate rapid detection and analysis of single nanovesicles and viruses using line-imaging optical scattering, fluorescence, and Raman spectroscopy. The project aims to enable physiologically selective, multimodal analysis of nanovesicles and viruses at speeds ~100× faster than conventional scanning methods (i.e., confocal fluorescence and Raman spectroscopy). Project outcomes will have immediate relevance for emerging applications in life sciences (e.g., elucidating cell signaling pathways), nanomedicine (e.g., dynamic antibody binding response to lipid membranes used in mRNA vaccines), and disease diagnosis (e.g., amplification-free viral detection).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:该项目旨在设计和演示一个传感平台,该平台在电路的电气陷阱和整合中都结合了快速浓度,分类和分析生物纳米粒子的进步。从患者的液体样品(例如尿液,血液等)中提取的病毒和细胞片段包含丰富的诊断信息,可用于检测和治疗许多疾病。但是,从样品中许多其他颗粒的混合物中检测特定的靶标生物颗粒会使诊断复杂化。隔离目标生物颗粒的当前方法通常需要耗时的过程,例如多次滤波或离心阶段,然后进行扩增。因此,一个活跃的生物镜会根据其大小和物理特性迅速分类,陷阱和检测生物颗粒将对生物传感和医学诊断领域产生重大影响。产生此类传感器的质量可以减少接受医学诊断测试的患者的复杂性,成本和延迟。该项目还为在STEM领域中代表性不足的本科和高中生提供了心理和宣传机会。技术描述:该项目将开发一个生物传感器,可以通过使用可见的dielectroper troppation(Dep)trappation(Dep)trappation(Dec)结合使用高度限制的波动电气来对细胞外蔬菜(EVS)进行分类,陷阱和检测细胞外蔬菜(EV)和病毒标本。为了演示这个波导集成的石墨烯纳米二维(或“ Wigner”)平台,团队将:1)组合透明的DEP石墨烯电极和氮化硅光子波导; 2)集成的微流体,用于有效的纳米层分类和捕获; 3)使用线像光学散射,荧光和拉曼光谱法证明了对单纳维亚和病毒的快速检测和分析。该项目旨在以比传统扫描方法(即共聚焦荧光和拉曼光谱法)快〜100×naNovesicles和病毒的物理选择性,多模式分析。 Project outcomes will have immediate relevance for emerging applications in life sciences (e.g., elucidating cell signaling pathways), nanomedicine (e.g., dynamic Antibody binding response to lipid membranes used in mRNA vaccines), and disease diagnostics (e.g., amplification-free viral detection).This award reflects NSF's statutory mission and has been deemed precious of support through使用基金会的智力优点和更广泛的影响评估标准进行评估。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Switching the Symmetry of Graphene Plasmons with Nanoemitters for Ultimate Infrared-Light Confinement
- DOI:10.1103/physrevapplied.19.064039
- 发表时间:2020-12
- 期刊:
- 影响因子:4.6
- 作者:I. Lee;L. Mart'in-Moreno;P. Avouris;T. Low;Sang‐Hyun Oh
- 通讯作者:I. Lee;L. Mart'in-Moreno;P. Avouris;T. Low;Sang‐Hyun Oh
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathan Youngblood其他文献
OFHE: An Electro-Optical Accelerator for Discretized TFHE
OFHE:用于离散化 TFHE 的电光加速器
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Meng Zheng;Cheng Chu;Qian Lou;Nathan Youngblood;Mo Li;Sajjad Moazeni;Lei Jiang - 通讯作者:
Lei Jiang
Nathan Youngblood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathan Youngblood', 18)}}的其他基金
CAREER: Multi-Dimensional Photonic Accelerators for Scalable and Efficient Computing
职业:用于可扩展和高效计算的多维光子加速器
- 批准号:
2337674 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: Fast and efficient phase-change photonics using low-dimensional materials
合作研究:使用低维材料的快速高效的相变光子学
- 批准号:
2210169 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Elucidating Structural Transformations in MoTe2 for Efficient Optoelectronic Memory
阐明 MoTe2 的结构转变以实现高效光电存储器
- 批准号:
2003325 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
High Endurance Phase-Change Devices for Electrically Reconfigurable Optical Systems
用于电可重构光学系统的高耐久性相变器件
- 批准号:
2028624 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
单一取向CsPbBr3一维光波导阵列在异质半导体低维结构上的面内集成及其在光电互联中的应用研究
- 批准号:62374057
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于长余辉发光有机晶体光波导现象的远程无损生物传感研究
- 批准号:22365031
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于过模波导结构的毫米波传输器件关键技术研究
- 批准号:62371210
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
原子-微纳波导系统中的非厄米非线性与量子光学效应研究
- 批准号:12374303
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
面向增强现实抬头显示的大幅面曲面衍射波导关键技术研究
- 批准号:62375194
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
- 批准号:
2227460 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: High-frequency, High-power Amplifier Based on Distributed Coupling of GaN HEMTs Through a SiC Substrate-integrated Waveguide
合作研究:基于 SiC 衬底集成波导的 GaN HEMT 分布式耦合的高频、高功率放大器
- 批准号:
2132329 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: High-frequency, High-power Amplifier Based on Distributed Coupling of GaN HEMTs Through a SiC Substrate-integrated Waveguide
合作研究:基于 SiC 衬底集成波导的 GaN HEMT 分布式耦合的高频、高功率放大器
- 批准号:
2132323 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EAGER Collaborative Research: Optimizing RNA binding and detection for use in the Capillary Waveguide Biosensor ESP module for automated, in situ microbial process studies
EAGER 协作研究:优化 RNA 结合和检测,用于毛细管波导生物传感器 ESP 模块,用于自动化原位微生物过程研究
- 批准号:
1135480 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EAGER Collaborative Research: Optimizing RNA binding and detection for use in the Capillary Waveguide Biosensor ESP module for automated, in situ microbial process studies
EAGER 协作研究:优化 RNA 结合和检测,用于毛细管波导生物传感器 ESP 模块,用于自动化原位微生物过程研究
- 批准号:
1133999 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Standard Grant