CAREER: Multi-Dimensional Photonic Accelerators for Scalable and Efficient Computing
职业:用于可扩展和高效计算的多维光子加速器
基本信息
- 批准号:2337674
- 负责人:
- 金额:$ 55.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-04-01 至 2029-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Despite advances in parallel computing platforms such as graphics processing units (GPUs), the growing demand for high computing power in emerging artificial intelligence (AI) applications far exceeds hardware efficiency improvements in current electronic systems. Optical computing promises improved efficiency and speed over conventional computing hardware, but is currently limited by power consumption, precision, and scalability issues. This project aims to revolutionize the field of AI by addressing these outstanding issues in current photonic computing architectures, thus unleashing the advantages of photonic computing for AI. In this CAREER proposal, the PI plans to advance optical computing through: (1) integrating photonic circuits and image sensors, (2) demonstrating multi-dimensional photonic computing, and (3) developing a simulation framework for large-scale photonic neural networks. Beyond technical advancements, the project’s educational goals include cultivating a diverse high-tech workforce in Pittsburgh through affordable educational tools, annual STEM workshops, and mentoring undergraduate researchers. Voluntary assessments in collaboration with Pitt's Engineering Education Research Center will measure educational outcomes, providing quantifiable metrics for long-term impact.This project aims to address three major limitations of current photonic computing platforms—power hungry electrical readout, limited analog precision, and poor scalability—to enable a fast and efficient computing architecture which could transform the field of artificial intelligence (AI). Despite notable advances in parallel computing, gains in hardware efficiency are unable to keep pace with the growing demand for extremely high computing power required by emerging AI applications and services. This is primarily due to the fundamental trade-off between clock speed and computational efficiency in the electronic domain stemming from the capacitance and Joule heating of metal interconnects. The PI will address this fundamental issue by performing computation in the optical domain using multiple photonic degrees of freedom for improved compute efficiency and speed. In this CAREER proposal, the PI will create new knowledge and extend the boundaries of optical computing through three unified tasks which: (1) integrate photonics and image sensors for robust and scalable matrix operations; (2) demonstrate multi-dimensional photonic computing for complex-valued matrix operations; and (3) develop a simulation framework to model the compute efficiency and latency of the proposed hardware for large-scale deep neural networks. Beyond technical advancements, the PI aims to cultivate a diverse high-tech workforce in the greater Pittsburgh area. Initiatives include creating affordable educational tools exposing students to nanotechnology applications in AI, conducting annual STEM workshops in collaboration with Pitt's outreach program (LEAD), and mentoring undergraduate researchers through Pitt's EXCEL summer research program. Voluntary assessments will measure educational outcomes, providing quantifiable metrics for the project's broader impact on workforce diversity and innovation in AI.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管在平行计算平台(例如图形处理单元(GPU))中取得了进步,但在新兴人工智能(AI)应用中对高计算能力的需求不断增长,远远超过了当前电子系统的硬件效率。光学计算承诺在常规计算硬件上提高效率和速度,但目前受到功耗,精度和可伸缩性问题的限制。该项目旨在通过解决当前光子计算体系结构中的这些杰出问题,从而释放AI的光子计算的优势来彻底改变AI领域。在此职业建议中,PI计划通过:(1)整合光子电路和图像传感器,(2)展示多维光子计算,(3)为大型光子神经元网络开发模拟框架。除了技术进步之外,该项目的教育目标包括通过负担得起的教育工具,年度STEM研讨会和对本科研究人员进行心理培养在匹兹堡培养潜水员的高科技劳动力。与皮特的工程教育研究中心合作的自愿评估将衡量教育成果,为长期影响提供可量化的指标。该项目旨在解决当前光子计算平台的三个主要局限性 - 能力饥饿的电气读数,有限的模拟精确性和不良的可扩展性,以实现快速有效的计算体系结构,可以实现人类的智能(人工智能)(一个人的人工智能)。尽管在并行计算方面取得了显着进步,但硬件效率的提高仍无法跟上对新兴AI应用程序和服务所需的极高计算能力需求的增长。这主要是由于金属互连的电容和焦耳加热所引起的电子域的时钟速度和计算效率之间的基本权衡。 PI将使用多个光子自由度在光学结构域中进行计算来解决这个基本问题,以提高计算效率和速度。在此职业建议中,PI将通过三个统一任务创建新知识,并扩展光学计算的边界:(1)集成的光子学和图像传感器,以实现可靠和可扩展的矩阵操作; (2)演示了用于复杂值矩阵操作的多维光子计算; (3)开发一个模拟框架,以建模大规模深神经网络所提出的硬件的计算效率和延迟。除技术进步外,PI还旨在在大匹兹堡地区培养潜水员高科技劳动力。倡议包括创建负担得起的教育工具,使学生在AI中暴露于纳米技术应用程序,与Pitt的外展计划(LEAD)合作进行年度STEM研讨会,并通过Pitt的Excel Summer Research计划对本科研究人员进行心理化。自愿评估将衡量教育成果,为该项目在AI中对劳动力多样性和创新的更广泛影响提供可量化的指标。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛的影响标准通过评估来评估的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Nathan Youngblood其他文献
OFHE: An Electro-Optical Accelerator for Discretized TFHE
OFHE:用于离散化 TFHE 的电光加速器
- DOI:
- 发表时间:20242024
- 期刊:
- 影响因子:0
- 作者:Meng Zheng;Cheng Chu;Qian Lou;Nathan Youngblood;Mo Li;Sajjad Moazeni;Lei JiangMeng Zheng;Cheng Chu;Qian Lou;Nathan Youngblood;Mo Li;Sajjad Moazeni;Lei Jiang
- 通讯作者:Lei JiangLei Jiang
共 1 条
- 1
Nathan Youngblood的其他基金
Collaborative Research: Fast and efficient phase-change photonics using low-dimensional materials
合作研究:使用低维材料的快速高效的相变光子学
- 批准号:22101692210169
- 财政年份:2022
- 资助金额:$ 55.22万$ 55.22万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
- 批准号:22274592227459
- 财政年份:2022
- 资助金额:$ 55.22万$ 55.22万
- 项目类别:Standard GrantStandard Grant
Elucidating Structural Transformations in MoTe2 for Efficient Optoelectronic Memory
阐明 MoTe2 的结构转变以实现高效光电存储器
- 批准号:20033252003325
- 财政年份:2020
- 资助金额:$ 55.22万$ 55.22万
- 项目类别:Continuing GrantContinuing Grant
High Endurance Phase-Change Devices for Electrically Reconfigurable Optical Systems
用于电可重构光学系统的高耐久性相变器件
- 批准号:20286242028624
- 财政年份:2020
- 资助金额:$ 55.22万$ 55.22万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
水击压力波—光纤声波数据融合的多裂缝尺寸反演方法
- 批准号:52374019
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
面向大尺寸不规则物体空中柔性抓取的多飞行机器人模块化构建与协同控制研究
- 批准号:52305001
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
考虑颗粒形状和尺寸效应的粗粒土的多尺度本构模型
- 批准号:12372376
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
大尺寸直接带隙半导体γ-CuX(Br/I)晶体的多形体相变法生长及其超快闪烁性能研究
- 批准号:12375180
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
大尺寸伺服转台用多单元分布式弧线永磁电机设计与性能优化研究
- 批准号:52307049
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
High-throughput closed-loop direct aberration sensing and correction for multiphoton imaging in live animals
用于活体动物多光子成像的高通量闭环直接像差传感和校正
- 批准号:1057257210572572
- 财政年份:2023
- 资助金额:$ 55.22万$ 55.22万
- 项目类别:
CAREER: Enabling the Accurate Simulation of Multi-Dimensional Core-Level Spectroscopies in Molecular Complexes using Time-Dependent Density Functional Theory
职业:使用瞬态密度泛函理论实现分子复合物中多维核心级光谱的精确模拟
- 批准号:23379022337902
- 财政年份:2023
- 资助金额:$ 55.22万$ 55.22万
- 项目类别:Standard GrantStandard Grant
A multi-modal approach for efficient, point-of-care screening of hypertrophic cardiomyopathy
一种高效、即时筛查肥厚型心肌病的多模式方法
- 批准号:1074958810749588
- 财政年份:2023
- 资助金额:$ 55.22万$ 55.22万
- 项目类别:
CAREER: A Multi-dimensional Study of Electromagnetic Interference in Wide Bandgap Power Electronics: Modeling, Estimation, and Mitigation
职业:宽带隙电力电子中电磁干扰的多维研究:建模、估计和缓解
- 批准号:22368462236846
- 财政年份:2023
- 资助金额:$ 55.22万$ 55.22万
- 项目类别:Continuing GrantContinuing Grant
Indiana Center for Advanced Renal Microscopy and Molecular Imaging
印第安纳高级肾脏显微镜和分子成像中心
- 批准号:1074761610747616
- 财政年份:2023
- 资助金额:$ 55.22万$ 55.22万
- 项目类别: