EAGER: Towards robust, interpretable deep learning via communication theory and neuro-inspiration
EAGER:通过沟通理论和神经灵感实现稳健、可解释的深度学习
基本信息
- 批准号:2224263
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Deep neural networks (DNNs) are attaining great success in an increasing array of applications, yet there remain persistent concerns regarding their lack of interpretability and robustness. The standard approach to training DNNs is to optimize an end-to-end cost function based on variants of gradient descent. This simple approach is flexible, allowing innovation in architectures and applications, and scaling to neural networks with a large number of parameters, given enough data and computational power. Such end-to-end, or top-down training, however, does not provide control over, or understanding of, the features being extracted by the layers of the neural networks. The vulnerability of DNNs to adversarial attacks, for example, is a symptom of this phenomenon. The proposed research seeks to address these drawbacks using ideas from communication theory and neuroscience: the goal is to actively shape the features being extracted by individual layers of the neural network, in addition to training the overall network to attain an end-to-end goal. This research will contribute to curricular enhancements in signal processing and machine learning explored via courses, REU projects and senior capstone projects.The proposed technical approach leverages the existing computational infrastructure for training, while imposing layer-by-layer constraints aimed at producing sparse, strong activations. Drawing on ideas from communication theory, the goal is to learn “matched filters” which enhance the “signal-to-noise ratio (SNR)” at neuron outputs at each layer. One may show that this approach is consistent with Hebbian and anti-Hebbian (HAH) learning as posited in neuroscience, in which neurons that are strongly activated for an input are promoted, with less active neurons being demoted. This work posits enhanced robustness via such an SNR-maximizing strategy, together with additional nonlinear transformations such as divisive normalization borrowed from neuroscience. While preliminary visualizations indicate more interpretable neurons, there is reason to expect sparse, strong activations to be more amenable to quantitative interpretation via statistical and information-theoretic analysis. The goal of the proposed research is two-fold: to gain theoretical insight into HAH-based learning via toy models, and to demonstrate practical gains in robustness and interpretability relative to state of the art DNNs. Experimental evaluations will initially be conducted on image datasets which provide standard performance benchmarks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络(DNN)在烦恼的应用程序中取得了巨大的成功。给定足够的数据和计算机,无法控制神经网络的层次。 NEUROS塑造了K提取的功能,除了训练整个网络以实现端到端的目标,这项研究有助于通过课程处理和通过REU项目探索的信号处理和机器学习的增强项目。拟议的技术方法利用了他现有的计算基础架构进行培训,同时旨在逐层限制,旨在产生稀疏,强大的EAS。比率(SNR)“在每一层的神经元输出处。CH与神经科学中假定的Hebbian抗Hebbian(HAH)学习一致,其中促进了输入的神经元的神经元,促进了活性较低的神经元。这种SNR最大化的策略,以及诸如分裂归一化的添加性非传单,而初步的可视化表明,通过统计和理论上的研究表明,通过统计学上的解释更加可解释。模型,并在图像数据集中进行铝的实用性和IND解释性,以提供标准的表演。使用基金会的智力优点和更广泛的影响评估标准进行评估。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generalized Likelihood Ratio Test for Adversarially Robust Hypothesis Testing
- DOI:10.1109/tsp.2022.3198169
- 发表时间:2021-12
- 期刊:
- 影响因子:5.4
- 作者:Bhagyashree Puranik;Upamanyu Madhow;Ramtin Pedarsani
- 通讯作者:Bhagyashree Puranik;Upamanyu Madhow;Ramtin Pedarsani
Dynamic Positive Reinforcement For Long-Term Fairness
动态正强化以实现长期公平
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Puranik, B.;Madhow, U.;Pedarsani, R.
- 通讯作者:Pedarsani, R.
A Dynamic Decision-Making Framework Promoting Long-Term Fairness
促进长期公平的动态决策框架
- DOI:10.1145/3514094.3534127
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Puranik, Bhagyashree;Madhow, Upamanyu;Pedarsani, Ramtin
- 通讯作者:Pedarsani, Ramtin
Towards robust, interpretable neural networks via Hebbian/anti-Hebbian learning: A software framework for training with feature-based costs
通过赫布/反赫布学习实现稳健、可解释的神经网络:基于特征成本的训练软件框架
- DOI:10.1016/j.simpa.2022.100347
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Cekic, Metehan;Bakiskan, Can;Madhow, Upamanyu
- 通讯作者:Madhow, Upamanyu
Early Layers Are More Important For Adversarial Robustness
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Can Bakiskan;Metehan Cekic;Upamanyu Madhow
- 通讯作者:Can Bakiskan;Metehan Cekic;Upamanyu Madhow
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Upamanyu Madhow其他文献
Provably Secure Steganography: Achieving Zero K-L Divergence using Statistical Restoration
可证明安全的隐写术:使用统计恢复实现零 K-L 散度
- DOI:
10.1109/icip.2006.312388 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
K. Solanki;Kenneth Mark Sullivan;Upamanyu Madhow;B. S. Manjunath;S. Chandrasekaran - 通讯作者:
S. Chandrasekaran
Detection of hiding in the least significant bit
检测隐藏在最低有效位中
- DOI:
10.1109/tsp.2004.833869 - 发表时间:
2004 - 期刊:
- 影响因子:5.4
- 作者:
O. Dabeer;Kenneth Mark Sullivan;Upamanyu Madhow;S. Chandrasekaran;B. S. Manjunath - 通讯作者:
B. S. Manjunath
Blind adaptive interference suppression for the near-far resistant acquisition and demodulation of direct-sequence CDMA signals
- DOI:
10.1109/78.552211 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Upamanyu Madhow - 通讯作者:
Upamanyu Madhow
Robust Wireless Fingerprinting via Complex-Valued Neural Networks
通过复值神经网络实现稳健的无线指纹识别
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
S. Gopalakrishnan;Metehan Cekic;Upamanyu Madhow - 通讯作者:
Upamanyu Madhow
Wideband distributed transmit beamforming using channel reciprocity and relative calibration
使用信道互易性和相对校准的宽带分布式发射波束成形
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
P. Bidigare;Upamanyu Madhow;D. Brown;R. Mudumbai;A. Kumar;Benjamin Peiffer;S. Dasgupta - 通讯作者:
S. Dasgupta
Upamanyu Madhow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Upamanyu Madhow', 18)}}的其他基金
RINGS: Massive Extended-Array Transceivers for Robust Scaling of All-Digital mmWave MIMO
RINGS:大规模扩展阵列收发器,用于全数字毫米波 MIMO 的稳健扩展
- 批准号:
2148303 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Large: 4D100: Foundations and Methods for City-scale 4D RF Imaging at 100+ GHz
合作研究:CNS 核心:大型:4D100:100 GHz 城市规模 4D 射频成像的基础和方法
- 批准号:
2215646 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
NeTS: Large: Collaborative Research: GigaNets: A Path to Experimental Research in Millimeter Wave Networking
NeTS:大型:协作研究:GigaNets:毫米波网络实验研究之路
- 批准号:
1518812 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
NeTS: Small: Mobile mmWaves: Addressing the Cellular Capacity Crisis with 60 GHz Picocells
NeTS:小型:移动毫米波:利用 60 GHz 微微蜂窝解决蜂窝容量危机
- 批准号:
1317153 - 财政年份:2013
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Distributed coherence: fundamental building blocks, system concepts, and experimental demonstration
CIF:媒介:协作研究:分布式一致性:基本构建块、系统概念和实验演示
- 批准号:
1302114 - 财政年份:2013
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
XPLR: MultiGigabit millimeter wave mesh networks: Cross-layer design and experimental validation
XPLR:多千兆毫米波网状网络:跨层设计和实验验证
- 批准号:
0832154 - 财政年份:2008
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Towards A Theory of Communication With Sloppy Analog-to-Digital Conversion: A Framework for Low-Cost Gigabit wireless
走向一种具有马虎模数转换的通信理论:低成本千兆位无线框架
- 批准号:
0729222 - 财政年份:2007
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
TCHCS: COLLABORATIVE RESEARCH: Millimeter-wave MIMO: A New Architecture for Integrated 10-40 Gigabit Wireless/Optical Hybrid Networks
TCHCS:协作研究:毫米波 MIMO:集成 10-40 G 无线/光混合网络的新架构
- 批准号:
0636621 - 财政年份:2006
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
NeTS-NOSS: Imaging Sensor Nets: from Concept to Prototypes
NeTS-NOSS:成像传感器网络:从概念到原型
- 批准号:
0520335 - 财政年份:2005
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Distributed Space-Time Communication For Wireless Sensor Networks
无线传感器网络的分布式时空通信
- 批准号:
0431205 - 财政年份:2004
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似国自然基金
利用化学遗传学研究植物的向重力性
- 批准号:32370306
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
骤旱向季节性干旱演变的驱动机制及其对植被的影响机理
- 批准号:52309032
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
KLF5在前列腺肿瘤管腔祖细胞向神经内分泌细胞转变中的功能和机制研究
- 批准号:82303045
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
疏水FexC基催化剂上合成气向C4~C16线性α-烯烃的低碳、定向转化机制
- 批准号:22302149
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
- 批准号:82300777
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
ERI: Towards Robust and Secure Intelligent 3D Sensing Systems
ERI:迈向稳健、安全的智能 3D 传感系统
- 批准号:
2347426 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Towards Motion-Robust and Efficient Functional MRI Using Implicit Function Learning
使用内隐功能学习实现运动稳健且高效的功能 MRI
- 批准号:
EP/Y002016/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Research Grant
Towards Robust Hydrogen Electrode for High-Rate Alkaline Electrolysis
用于高速率碱性电解的坚固氢电极
- 批准号:
DP230102504 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Discovery Projects
Collaborative Research: SaTC: CORE: Small: Towards Robust, Scalable, and Resilient Radio Fingerprinting
协作研究:SaTC:核心:小型:迈向稳健、可扩展和有弹性的无线电指纹识别
- 批准号:
2225161 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CRII: CNS: Towards Robust and Efficient Dynamic Spectrum Sharing with Knowledge Transfer
CRII:CNS:通过知识转移实现稳健、高效的动态频谱共享
- 批准号:
2245918 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant