DASS: Exploring how convergence methods foster shared accountability to reveal, map, and mitigate the sources and dynamics of bias across social service provisioning systems

DASS:探索融合方法如何促进共同责任,以揭示、映射和减轻社会服务提供系统中偏见的来源和动态

基本信息

  • 批准号:
    2217706
  • 负责人:
  • 金额:
    $ 74.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Social services, traditionally, have been organized around their missions, such as education or safety or health. A newer approach, called "wrap-around services" or "systems of care," organizes services around individuals and their specific context and needs. These systems face many challenges when applied in real-world settings. Application processes often focus more on the potential of technologies and less on the realities, histories, and needs of communities. The proposed research addresses this gap by evaluating the implementation of a system of care in a real-world setting. The research involves studying how civic participation may be better supported and bias reduced in the development and integration of systems of care for communities. A key outcome of this proposal is to understand the influence of processes inspired by justice, equity, diversity, and inclusion to intentionally check bias and reduce disparities in the design and application of public service provisioning software systems. The goal of the proposed work is to advance accountable software systems through developing generalizable and localizable practices for exploring how to identify specific and systemic sources of bias, improve public service provisioning outcomes, and minimize disparities from biased program outcomes.The proposed work builds from existing theory and the project team’s experience in designing and executing software systems that support services to the public. The intent is to identify and map the different types of threats to accountability that can be anticipated within the socio-computational ecosystem of care services. The team is studying dynamics of how bias might propagate across the system through regulations, social contexts, data, and lack of representation in the software development process, among other factors. Once such dynamics are mapped, the team will explore how to attend to bias through a series of interventions planned and conducted in collaboration with community members. These will include mapping the system collaboratively, and holding knowledge convergence workshops, algorithmic impact assessments, and using computational analytic techniques that can augment governance opportunities in the design and deployment of these systems of care. An outcome measure to be tracked through this process is the effectiveness of a system at responding to individual-level threats and creating bias immunity at the systems level through shared stewardship and accountability. The type of products expected from this research are advances in theory (articulation of novel threats, new understandings of dynamics & treatments), specific products related to an algorithmic accountability policy toolkit, and guidelines for practice customizable to local use cases through generalizable convergence workshops.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传统上,社会服务是围绕其使命来组织的,例如教育、安全或健康。一种称为“全方位服务”或“护理系统”的新方法是围绕个人及其特定背景和需求来组织服务。系统在现实环境中应用时面临许多挑战。应用程序通常更多地关注技术的潜力,而不是现实、历史和社区的需求。拟议的研究通过评估护理系统的实施来解决这一差距。该研究涉及研究公民如何在现实世界中。在社区护理系统的开发和整合过程中,可以更好地支持参与并减少偏见。该提案的一个关键成果是了解受正义、公平、多样性和包容性启发的流程的影响,以有意识地检查偏见并减少差异。拟议工作的目标是通过开发可普遍化和可本地化的实践来推进负责任的软件系统,以探索如何识别具体和系统性的偏见来源,改善公共服务提供结果,并最大限度地减少偏见。来自有偏见的计划结果的差异。拟议的工作以现有理论和项目团队在设计和执行支持公众服务的软件系统方面的经验为基础,其目的是识别和映射在护理社会计算生态系统中可以预见的不同类型的问责威胁。该团队正在研究偏见如何通过法规、社会背景、数据和软件开发过程中缺乏代表性等因素在系统中传播的动态。一旦绘制出这些动态,该团队将探索如何参与其中。通过一系列有计划的干预措施来消除偏见这些将包括协作绘制系统、举办知识融合研讨会、算法影响评估以及使用计算分析技术来增强这些护理系统的设计和部署的治理机会。通过这个过程跟踪的是系统在响应个人层面的威胁和通过共享管理和问责制在系统层面上创建偏见免疫的有效性。这项研究预期的产品类型在理论上正在进步(阐明新的威胁,对动力学的新理解处理)、与算法问责政策工具包相关的具体产品,以及通过可推广的融合研讨会根据当地用例定制的实践指南。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Two-sided Cultural Niches: Topic Overlap, Geospatial Correlation, and Local Group Activities on Event-based Social Networks
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Margaret Hinrichs其他文献

Margaret Hinrichs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

肠道病毒抑制Wnt/β-catenin信号通路的机制解析与治疗手段探索
  • 批准号:
    82302500
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
氟-18标记咪唑啉I2受体显像剂的研究及其在AD早期诊断中的应用探索
  • 批准号:
    22306014
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向资源受限嵌入式系统的深度神经网络优化和软硬件架构协同探索
  • 批准号:
    62372183
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
“物质-代谢-效应”模式探索瑶药石柑子介导TLR4/NF-κB通路抗RA作用的药效物质基础及作用机制
  • 批准号:
    82304866
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
构建神经系统成纤维细胞多组学图谱探索其在神经系统发育中的功能
  • 批准号:
    32371023
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Exploring how affordable, global people-centred geospatial data products could help planners to evaluate, plan and track progress to UN SDGs 3, 11 and 15
探索经济实惠、以人为本的全球地理空间数据产品如何帮助规划者评估、规划和跟踪联合国可持续发展目标 3、11 和 15 的进展
  • 批准号:
    10050824
  • 财政年份:
    2023
  • 资助金额:
    $ 74.88万
  • 项目类别:
    Collaborative R&D
Puffins: Exploring how narrative, data science, and artificial intelligence enhance the study of ecology in middle school
Puffins:探索叙事、数据科学和人工智能如何增强中学生态学的学习
  • 批准号:
    2241777
  • 财政年份:
    2023
  • 资助金额:
    $ 74.88万
  • 项目类别:
    Standard Grant
Exploring how cells generate and release distinct subpopulations of dense-core vesicles
探索细胞如何产生和释放不同的致密核心囊泡亚群
  • 批准号:
    10679873
  • 财政年份:
    2023
  • 资助金额:
    $ 74.88万
  • 项目类别:
NSF PRFB FY23: Dissecting the holobiont: exploring how genetics, environments, and microbiomes contribute to emergent host phenotypes
NSF PRFB FY23:剖析全生物:探索遗传学、环境和微生物组如何促进新兴宿主表型
  • 批准号:
    2305704
  • 财政年份:
    2023
  • 资助金额:
    $ 74.88万
  • 项目类别:
    Fellowship Award
How can a therapeutic approach inform an autoethnographic novel exploring the effects of anti-gay legislation in 80s/90s Brighton?
治疗方法如何为探索 80 年代/90 年代布莱顿反同性恋立法影响的自民族志小说提供信息?
  • 批准号:
    2887974
  • 财政年份:
    2023
  • 资助金额:
    $ 74.88万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了