Collaborative Research: PPoSS: Planning: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)

合作研究:PPoSS:规划:可扩展和稀疏张量网络的跨层协调和优化(CROSS)

基本信息

  • 批准号:
    2217020
  • 负责人:
  • 金额:
    $ 6.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

High-dimensional data computation or analytics are gaining importance in many domains, such as quantum chemistry/physics, quantum circuit simulation, brain processing, social networks, healthcare and machine/deep learning, to name a few. Tensors, a representation of high-dimensional data, are playing an increasingly critical role, and so are tensor methods. Tensor decompositions or factorizations of low-dimensional data (three to five dimensions) have been extensively studied over the past years from a high-performance computing and also compiler and computer architecture angles for their computational core operations, while tensor networks targeting very high-dimensional data (over ten dimensions) and extracting physically meaningful latent variables are underdeveloped because of their complicated mathematical nature, extremely high computational complexity, and more domain-dependent challenges. The project’s novelties are manifold: 1) memory heterogeneity-aware representations with algorithm and system optimizations, which could be adopted to solve other problems such as irregular applications and sparse numerical methods; 2) hardware-software co-design of specialized, sparse-tensor network-accelerator architectures, that are among the first hardware implementations of sparse-tensor networks. The project’s impacts are 1) advancing state-of-the-art tensor decomposition studies to model true higher-order and sparse data; 2) triggering a closer long-term collaboration ranging from academia to research labs to industry by studying solicitous applications; 3) bringing appropriate educational opportunities.This project proposes Cross-layer cooRdination and Optimization for Scalable and Sparse-Tensor Networks (CROSS) for heterogeneous systems that are equipped with various types of accelerators, such as GPUs, TPUs and FPGAs, as well as heterogeneous memories with dynamic and non-volatile random-access memories (DRAM+NVRAM). This research aims to study the sparsity in widely used tensor networks by introducing constraints, regularization, dictionaries, and/or domain knowledge for better data compression, faster computation, lower memory usage and better interpretability. Besides the sparsity challenges, sparse-tensor networks also suffer from the curse of dimensionality, aggravated data randomness and irregular program and memory access behaviors. This planning project conducts preliminary research that aims to address these challenges from four perspectives: (1) memory heterogeneity-aware representations and data (re-)arrangement, (2) balanced sparse tensor contraction (SpTC) algorithms with smart page arrangement, (3) memoization and intelligent allocation to reduce computational cost, and (4) specialized accelerator architectures for sparse-tensor networks. The optimized sparse tensor networks will encompass efforts from high-performance computing, algorithms, compilers, computer architecture and performance modeling and will be tested under multiple application scenarios.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高维数据计算或分析在许多领域中变得重要,例如量子化学/物理,量子电路模拟,大脑处理,社交网络,医疗保健和机器/深度学习,仅举几例。张量是高维数据的表示,起着越来越关键的作用,张量方法也是如此。在过去的几年中,从高性能计算,编译器和计算机架构角度来计算核心核心操作,在过去几年中,张量分解或因素化(三到五个维度)已被广泛研究,同时张张量的网络针对了非常高的量化(超过十分尺寸),因为它们具有较高的物理含量的量化,因为它们具有较高的量化量,因为它们的数量较高,因为它们具有较高的量化量,因为它们的数量较高,因为它们的数量较高,因为它们的数量较高,因为它们的量化量很高,因为它们的数量较高的量计算复杂性和更依赖域的挑战。该项目的新颖性是多种多样的:1)具有算法和系统优化的内存异质性表述,可以采用其他问题,例如不规则应用和稀疏数值方法; 2)硬件 - 软件软件共同设计的专用,稀疏网络加速器架构,这是稀疏张量网络的第一个硬件实现之一。该项目的影响是1)进步最新的张量分解研究,以模拟真正的高阶和稀疏数据; 2)通过研究坚固的应用来触发从学术界到研究实验室再到行业的更紧密的长期合作; 3)带来适当的教育机会。该项目提案跨层协调和优化,可扩展和稀疏量张量网络(交叉),用于异质系统,这些系统与各种类型的加速器,例如GPU,TPU和FPGA等各种类型的加速器,以及动态和非挥发性的随机记忆,以及+挥发性随机的记忆(这项研究旨在通过引入约束,调节,字典和/或域知识来研究广泛使用的张量网络中的稀疏性,以获得更好的数据压缩,更快的计算,较低的内存使用和更好的可解释性。除了稀疏挑战外,稀疏张量网络还遭受了维度,汇总数据随机性以及不规则程序和内存访问行为的诅咒。 This planning project conducts preliminary research that aims to address these challenges from four perspectives: (1) memory heterogeneity-aware representations and data (re-)arrangement, (2) balanced sparse tensor contract (SpTC) algorithms with smart page arrangement, (3) memoization and intelligent allocation to reduce computational cost, and (4) specialized accelerator architectures for sparse-tensor networks.优化的稀疏张量网络将涵盖高性能计算,算法,编译器,计算机架构和性能建模的工作,并将在多个应用程序场景下进行测试。该奖项反映了NSF的法定任务,并通过使用该基金会的智力功能和广泛的影响来评估NSF的法定任务。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Frank Mueller其他文献

Does Data Disclosure Increase Citations? Empirical Evidence from a Natural Experiment in Leading Economics Journals
数据披露会增加引用吗?
Trade, Competition and Welfare in Global Online Labour Markets: A 'Gig Economy' Case Study
全球在线劳动力市场的贸易、竞争和福利:“零工经济”案例研究
  • DOI:
    10.2139/ssrn.3090929
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Estrella Gomez;B. Martens;Frank Mueller
  • 通讯作者:
    Frank Mueller
nMobility Restrictions and the Substitution between On-site and Remote Work: Empirical Evidence from a European Online Labour Market
流动性限制以及现场工作和远程工作之间的替代:来自欧洲在线劳动力市场的经验证据
Data-intensive document clustering on graphics processing unit (GPU) clusters
  • DOI:
    10.1016/j.jpdc.2010.08.002
  • 发表时间:
    2011-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yongpeng Zhang;Frank Mueller;Xiaohui Cui;Thomas Potok
  • 通讯作者:
    Thomas Potok
Parallel Trade and its Ambiguous Effects on Global Welfare
平行贸易及其对全球福利的模糊影响
  • DOI:
    10.1111/j.1467-9396.2011.01016.x
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Frank Mueller
  • 通讯作者:
    Frank Mueller

Frank Mueller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Frank Mueller', 18)}}的其他基金

EAGER: Curricula Development of a Quantum Programming Class with Hardware Access
EAGER:具有硬件访问功能的量子编程课程的课程开发
  • 批准号:
    1917383
  • 财政年份:
    2019
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Enhanced Security and Reliability for Embedded Control Systems
SaTC:CORE:小型:增强嵌入式控制系统的安全性和可靠性
  • 批准号:
    1813004
  • 财政年份:
    2018
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Standard Grant
Student Travel Grant for RTSS'17 Ph.D. Student Poster Forum on Real-Time Aspects of Internet of Things and Cyber-Physical Systems
RTSS17 博士学生旅费补助金
  • 批准号:
    1744221
  • 财政年份:
    2017
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Standard Grant
CPS: Breakthrough: Collaborative Research: Bringing the Multicore Revolution to Safety-Critical Cyber-Physical Systems
CPS:突破:协作研究:为安全关键的网络物理系统带来多核革命
  • 批准号:
    1239246
  • 财政年份:
    2013
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Standard Grant
SHF: Small: Scalable Trace-Based Tools for In-Situ Data Analysis of HPC Applications (ScalaJack)
SHF:小型:用于 HPC 应用程序现场数据分析的可扩展的基于跟踪的工具 (ScalaJack)
  • 批准号:
    1217748
  • 财政年份:
    2012
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Standard Grant
SHF: Small: RESYST: Resilience via Synergistic Redundancy and Fault Tolerance for High-End Computing
SHF:小型:RESYST:通过协同冗余和容错实现高端计算的弹性
  • 批准号:
    1058779
  • 财政年份:
    2010
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Standard Grant
II-NEW: ARC: A Root Cluster for Research into Scalable Computer Systems
II-新:ARC:用于研究可扩展计算机系统的根集群
  • 批准号:
    0958311
  • 财政年份:
    2010
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Standard Grant
CSR: Medium: Collaborative Research: Providing Predictable Timing for Task Migration in Embedded Multi-Core Environments (TiME-ME)
CSR:中:协作研究:为嵌入式多核环境中的任务迁移提供可预测的时序 (TiME-ME)
  • 批准号:
    0905181
  • 财政年份:
    2009
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Continuing Grant
CSR--EHS: Collaborative Research: Hybrid Timing Analysis via Multi-Mode Execution
CSR--EHS:协作研究:通过多模式执行进行混合时序分析
  • 批准号:
    0720496
  • 财政年份:
    2007
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Effective Detection and Alleviation of Scalability Problems
协作研究:有效检测和缓解可扩展性问题
  • 批准号:
    0429653
  • 财政年份:
    2004
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316161
  • 财政年份:
    2023
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316176
  • 财政年份:
    2023
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316158
  • 财政年份:
    2023
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316201
  • 财政年份:
    2023
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316203
  • 财政年份:
    2023
  • 资助金额:
    $ 6.25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了