Self-Assembling Volumetric Optical Metamaterials

自组装体积光学超材料

基本信息

  • 批准号:
    2211148
  • 负责人:
  • 金额:
    $ 79.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARY:A central challenge of nanotechnology is to convert abundant, naturally occurring materials into high performance materials with desired properties. Inverse design is one way to create materials with extraordinary optical properties such as invisibility. In this approach, a computer algorithm combines just two materials such as sand and air into tiny three-dimensional structures with the desired optical properties. However, the extreme complexity of resulting designs makes them extremely difficult and costly to make. This project aims to develop a new approach for facile synthesis of materials with special optical properties. The investigators will develop a new nanoscale synthesis approach that exploits the remarkable programmability of DNA to enable construction of 3D structures that previously existed only in theory. Nanoscale particles will be decorated with DNA strands with precise sequences and locations, inducing their self-assembly into “inversely designed” structures. The research team will characterize these new materials and explore how their use in high performance devices. The proposed research will yield a general approach to design and synthesize materials with unprecedented scalability and precision, while eliminating the need for expensive and unsustainable nanofabrication facilities. The PI is committed to empowering the creativity and adoption of the new approach by diverse students of all ages. Towards that end, the proposed research concepts will be disseminated via inclusive mentoring and outreach activities for students spanning high school, college, and graduate levels.TECHNICAL SUMMARY:The overarching goal of this project is to develop an approach to self-assemble nanoscale dielectric and plasmonic “material voxels” into volumetric metamaterials with arbitrary photonic functions in the visible spectrum. This research will take powerful concepts developed in the fields of electromagnetic inverse design and DNA nanotechnology and combines them to construct materials with previously unattainable optical functions. The self-assembly of nanoscale inorganic voxels will be achieved by embedding DNA recognition capabilities into them. The main scientific challenges to tackle are: (1) How to synthesize DNA-functionalized material voxels. Several ways to transfer the unique addressability of DNA origami from a 2D DNA-only breadboard to a 3D material voxel surface will be explored. (2) How to self-assemble voxels into microstructures with arbitrary photonic functions such as color sorting. Several strategies to self-assemble the DNA-functionalized voxels into desired nanophotonic architectures will be developed. (3) How to design and characterize optical functions for multivoxel architectures. The investigators will construct architectures with several specific functions in visible and IR windows and characterize them. (4) How to precisely place optical elements onto existing devices. Integration of the obtained architectures with existing optoelectronic device platforms will be explored. The ultimate goal is to turn self-assembly into a versatile, robust, and accessible tool for practical construction of photonic materials and beyond.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:纳米技术的核心挑战是将丰富的自然材料转换为具有所需特性的高性能材料。逆设计是创建具有非凡光学特性(例如隐形性)的材料的一种方法。在这种方法中,计算机算法仅将两种材料(例如沙子和空气)结合到具有所需的光学特性的微型三维结构中。但是,产生的设计的极端复杂性使它们非常困难和成本高昂。该项目旨在开发一种新方法,以便利具有特殊特性的材料。研究人员将开发一种新的纳米级合成方法,该方法利用了DNA的显着可编程性,以实现以前仅在理论中存在的3D结构的构建。纳米级颗粒将用具有精度序列和位置的DNA链装饰,将它们的自组装诱导为“成型”结构。研究团队将描述这些新材料,并探讨它们在高性能设备中的使用方式。拟议的研究将产生一种一般的方法,以使用前所未有的可扩展性和精确度来设计和合成材料,同时消除了对昂贵且不可持续的纳米化设施的需求。 PI致力于赋予各个年龄段的不同学生对新方法的创造力和采用。为此,拟议的研究概念将通过为跨越高中,大学和研究生级别的学生进行包容性的心理和外展活动来分散。技术总结:该项目的总体目标是开发一种自我组装的纳米级饮食和等离质的“物质voxels”的方法,并将其材料“物质素”与自调的光电效果相关,以可访问的光电效果。这项研究将采用在电磁逆设计和DNA纳米技术领域发展的强大概念,并将它们结合起来,构建具有以前无法实现的光学功能的材料。纳米级无机体素的自组装将通过将DNA识别能力嵌入其中来实现。要解决的主要科学挑战是:(1)如何合成DNA官能化的材料体素。将探索将DNA折纸从仅2D DNA面包板转移到3D材料体素表面的几种方法。 (2)如何将体素自组装成具有任意光子函数(例如颜色排序)的微观结构。将开发几种将DNA官能化体素自我组装成所需的纳米光体架构的策略。 (3)如何设计和表征多毒素体系结构的光学功能。研究人员将在可见窗口和IR窗口中构建具有多个特定功能的体系结构,并将其表征。 (4)如何精确将光学元素放在现有设备上。将探索与现有的光电设备平台相集成的架构。最终的目标是将自组装变成用于实践构造光子材料及以后的多功能,健壮且可访问的工具。该奖项反映了NSF的法定任务,并且我们是否使用基金会的智力优点和更广泛的影响来审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Grigory Tikhomirov其他文献

Grigory Tikhomirov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Grigory Tikhomirov', 18)}}的其他基金

CAREER: Three-dimensional Nanoscale Device Fabrication via Molecular Programming and DNA-based Self-assembly
职业:通过分子编程和基于 DNA 的自组装制造三维纳米器件
  • 批准号:
    2240000
  • 财政年份:
    2023
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Standard Grant

相似国自然基金

Lambda噬菌体尾部组装及侵染机制研究
  • 批准号:
    32371254
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
无机熔融盐水合物解聚木质纤维全组分聚合物自组装凝胶化行为及其调控机制研究
  • 批准号:
    22378036
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
内质网蛋白Mnr1调控微管组装的机制研究
  • 批准号:
    32300563
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
力学引导微纳结构三维组装的刚度增强策略与实验研究
  • 批准号:
    12302217
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
可聚合聚乙烯亚胺组装界面构建化学结合混合层促进牙本质粘接的机制研究
  • 批准号:
    82301118
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Assembling the building blocks in the blueprint of the embryonic head
在胚胎头部的蓝图中组装积木
  • 批准号:
    DP240101571
  • 财政年份:
    2024
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Discovery Projects
NSF Convergence Accelerator Track M: Slime Mold Inspired Self-Assembling Conveyor System for Flood Response
NSF 融合加速器轨道 M:受粘菌启发的用于洪水响应的自组装输送系统
  • 批准号:
    2344289
  • 财政年份:
    2024
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Assembling the foundation of modern mammal community structure in the first 7 million years after the K/Pg mass extinction
合作研究:为 K/Pg 大规模灭绝后的前 700 万年建立现代哺乳动物群落结构的基础
  • 批准号:
    2321344
  • 财政年份:
    2023
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Architecting DNA Nanodevices into Metamaterials, Transducing Materials, and Assembling Materials
DMREF/合作研究:将 DNA 纳米器件构建为超材料、转换材料和组装材料
  • 批准号:
    2323968
  • 财政年份:
    2023
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Standard Grant
Self-Assembling Peptide Nanoparticles for in vivo Genome Editor Delivery to Hematopoietic Stem Cells
用于体内基因组编辑器递送至造血干细胞的自组装肽纳米颗粒
  • 批准号:
    10605021
  • 财政年份:
    2023
  • 资助金额:
    $ 79.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了