CAREER: Three-dimensional Nanoscale Device Fabrication via Molecular Programming and DNA-based Self-assembly

职业:通过分子编程和基于 DNA 的自组装制造三维纳米器件

基本信息

  • 批准号:
    2240000
  • 负责人:
  • 金额:
    $ 54.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2028-04-30
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) grant supports the development of a new nanofabrication approach based on self-assembly of nanoscale materials guided by DNA molecules. Nature has evolved the ability to self-assemble nanomaterials into complex three-dimensional geometries in a sustainable bottom-up way. In contrast, most human-made devices are assembled through a rational top-down process which is highly inflexible, expensive, and unsustainable. This research seeks to combine the strengths of natural biomolecular self-assembly and rational engineering by encoding molecular recognition into high-performance materials. The goal is to develop a new nanomanufacturing technology to fabricate complex nanoscale devices, without using expensive semiconductor factories and methods. The new manufacturing approach enables a diverse range of applications, from tiny sensors with unprecedented sensitivity to electronic devices that can self-evolve. The research is integrated with an educational and outreach program that introduces self-assembly concepts to students from K-12 to graduate level and trains a workforce for versatile, sustainable, affordable, and accessible future nanomanufacturing.Despite decades of development, molecular self-assembly has not yet yielded a disruptive nanoscale manufacturing approach. This is largely due to two unsolved challenges: (i) the lack of programmable complexity in achievable architectures built from diverse, high-performance nanomaterials such as quantum dots and nanowires and (ii) the lack of scalable yet precise methods for integrating these architectures with existing devices. This research aims to meet both challenges by maximizing the amount of molecular recognition encoded into nanoscale material components and macroscale devices. The solution is to place multiple unique DNA sequences onto precise locations on surfaces of nanoscale and macroscale components. For nanoscale components this is achieved by wrapping nanoparticles into DNA origami “suits” or boxes via programming nanoparticle–DNA interactions, such as metal-purine base, electrostatic forces, DNA-DNA pairing, etc. These arrays of multiple unique DNA strands serve collectively as molecular zip codes allowing nanoscale components to autonomously recognize and bind to each other. For macroscale surfaces this is achieved by patterning with conventional optical lithography and then performing DNA origami conjugation with standard amine–carboxyl chemistry or with new molecular barcoding approaches to anchor thousands of unique single-stranded DNA in precise positions. This patterned macroscale device surface provides a multitude of docking sites for the architectures self-assembled from nanoparticles yielding the final device. By studying and understanding the thermodynamics of self-assembly processes, nanoscale structures, experimental parameters, and performance of the resulting devices, this research pushes the limits of what is possible to fabricate with molecular programming.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展 (CAREER) 资助支持开发一种新的纳米制造方法,该方法基于 DNA 分子引导的纳米级材料自组装,大自然已经进化出在可持续底部将纳米材料自组装成复杂三维几何形状的能力。相比之下,大多数人造设备都是通过合理的自上而下的过程组装的,这种过程非常不灵活、昂贵且不可持续。通过将分子识别编码到高性能材料中进行自组装和合理工程,目标是开发一种新的纳米制造技术来制造复杂的纳米级器件,而无需使用昂贵的半导体工厂和方法,新的制造方法可以实现多种应用。从具有前所未有的敏感性的微小电子设备到可以自我进化的电子设备,该研究与一项教育和推广计划相结合,向从 K-12 到研究生水平的学生介绍自组装概念,并培训一支使用多功能、可持续、经济实惠的传感器的队伍。 ,以及可及的未来纳米制造。尽管经过数十年的发展,分子自组装尚未产生颠覆性的纳米级制造方法,这主要是由于两个尚未解决的挑战:(i)由多种高性能纳米材料构建的可实现架构缺乏可编程复杂性。 (ii)缺乏将这些架构与现有设备集成的可扩展且精确的方法。本研究旨在通过最大限度地提高分子识别编码量来应对这两个挑战。解决方案是将多个独特的 DNA 序列放置在纳米级和宏观组件表面的精确位置,这可以通过对纳米颗粒 DNA 进行编程,将纳米颗粒包裹到 DNA 折纸“套装”或盒子中。相互作用,如金属-嘌呤碱基、静电力、DNA-DNA配对等。这些多个独特DNA链的阵列共同充当分子邮政编码,允许纳米级组件在宏观尺度上自主识别并相互结合。这是通过使用传统的光学光刻进行图案化,然后使用标准胺-羧基化学或新的分子条形码方法进行 DNA 折纸接合来实现的,以将数千个独特的单链 DNA 锚定在精确的位置。通过研究和理解自组装过程的热力学、纳米级结构、实验参数和所得设备的性能,由纳米颗粒自组装的结构的对接位点,产生最终的设备。这项研究突破了分子编程可能制造的极限。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Grigory Tikhomirov其他文献

Grigory Tikhomirov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Grigory Tikhomirov', 18)}}的其他基金

Self-Assembling Volumetric Optical Metamaterials
自组装体积光学超材料
  • 批准号:
    2211148
  • 财政年份:
    2022
  • 资助金额:
    $ 54.54万
  • 项目类别:
    Continuing Grant

相似国自然基金

多尺度多维度原位研究退役锂离子电池三元正极材料的直接再生机理
  • 批准号:
    22375081
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向实景三维的泛地图维度模型与知识化表达研究
  • 批准号:
    42301502
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于“Healthy-NAT-Tumor”三维度的食管鳞癌蛋白组学数据挖掘及其临床意义研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
“经济-环境-社会”三重维度对全要素生产率交互影响的作用机理分析
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:

相似海外基金

Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
  • 批准号:
    10572539
  • 财政年份:
    2023
  • 资助金额:
    $ 54.54万
  • 项目类别:
Predictive modeling of mammalian cell fate transitions over time and space with single-cell genomics
利用单细胞基因组学预测哺乳动物细胞命运随时间和空间转变的模型
  • 批准号:
    10572855
  • 财政年份:
    2023
  • 资助金额:
    $ 54.54万
  • 项目类别:
Minerals in Nutrition and Development
营养与发育中的矿物质
  • 批准号:
    10747115
  • 财政年份:
    2023
  • 资助金额:
    $ 54.54万
  • 项目类别:
IL-13-induced SFRP1 requires STAT3 to regulate esophageal epithelial proliferation and Basal Zone Hyperplasia in EoE
IL-13诱导的SFRP1需要STAT3来调节EoE中的食管上皮增殖和基底区增生
  • 批准号:
    10677306
  • 财政年份:
    2023
  • 资助金额:
    $ 54.54万
  • 项目类别:
Deconstructing human body plan development with stem cells
用干细胞解构人体计划制定
  • 批准号:
    10644147
  • 财政年份:
    2023
  • 资助金额:
    $ 54.54万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了