Collaborative Research: Harnessing synergism between biosurfactants and enzymes to enable efficient valorization of cellulose: towards a sustainable materials bioeconomy

合作研究:利用生物表面活性剂和酶之间的协同作用,实现纤维素的有效增值:迈向可持续的材料生物经济

基本信息

  • 批准号:
    2211060
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Cellulose is an abundant, renewable, and environmentally-sustainable resource that can be used to produce nanocellulose and value-added fuels and chemicals. As such, cellulose is an ideal feedstock for building a circular bioeconomy. To realize this potential, however, scalable and sustainable methods are needed to efficiently convert cellulose into nanocellulose. Current chemical and mechanical nanocellulose production processes are efficient but unsustainable, as they require high energy and water inputs, use toxic and corrosive solvents, and generate large amounts of greenhouse gas emissions and high-volume waste streams. Enzymatic processes enable sustainable nanocellulose production but suffer from low yields. Petroleum-derived surfactants are often added to enhance enzymatic bioconversion of cellulose, but selecting an ideal surfactant is not straightforward and incorporates non-renewable resources into the process. Saprophytic fungi decompose cellulosic biomass by secreting an enzyme-laden mixture that includes cellulases as well as naturally-occurring biosurfactants called hydrophobins. Hydrophobins have been implicated in enhancing enzymatic cellulose decomposition and, thus, offer a potential green alternative to petrochemical surfactants. However, the role hydrophobins play in enhancing cellulase activity on cellulose remains unclear. The goal of this project is to develop a scalable, environmentally-sustainable process for nanocellulose production by leveraging the surface activity of hydrophobins to improve cellulose deconstruction and modification. This research will result in new tools to improve enzymatic cellulose conversion, thereby enabling the cellulose-based circular bioeconomy.This project is motivated by the need for scalable and sustainable processes to convert cellulosic biomass into nanocellulose and value-added fuels and chemicals. The investigation focuses on improving the rate and extent of enzymatic hydrolysis of cellulose by incorporating hydrophobin biosurfactants, which appear to synergistically enhance cellulase performance. The project aims to elucidate the mechanisms of biosurfactant-enhanced enzyme-cellulose interfacial interactions such that the kinetics of cellulose hydrolysis and functionalized nanocellulose production can be controlled. The project has three specific aims. Aim 1 will examine how hydrophobins interact with cellulose to affect surface and material properties and determine how hydrophobins facilitate enzymatic interactions and turnover with cellulose. Aim 2 will build an understanding of how the evolutionary diversity of hydrophobins leads to differences in cellulose and enzyme adsorption. This knowledge will be used to engineer novel hydrophobins with improved interfacial interactions that increase nanocellulose production. Aim 3 will evaluate the integration of enzymes, hydrophobins, and cellulose to engineer ideal conditions for consolidated bioprocessing, considering both in vitro and cell-based systems using Trichoderma reesei as a host. Ultimately, this work will lead to new knowledge of how biological systems modify interfaces during cellulose deconstruction, which is key to developing enzymatic approaches for efficient nanocellulose production.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纤维素是一种丰富,可再生和环境可持续的资源,可用于生产纳米纤维素和增值燃料和化学物质。因此,纤维素是建立圆形生物经济性的理想原料。但是,为了实现这种潜力,需要有效的可扩展和可持续的方法来有效地将纤维素转化为纳米纤维素。当前的化学和机械纳米纤维素生产过程是有效但不可持续的,因为它们需要高能量和水输入,使用有毒和腐蚀性溶剂,并产生大量的温室气体排放和大量废物流。酶促过程可实现可持续的纳米纤维素产生,但产量低。通常添加石油衍生的表面活性剂以增强纤维素的酶促生物转化,但是选择理想的表面活性剂并不简单,并将不可再生的资源纳入过程中。腐生真菌通过分泌含有酶的混合物,包括纤维素酶以及称为疏水燃料的天然生物表面活性剂来分泌纤维素生物量。疏水素与增强酶促纤维素分解有关,因此为石化表面活性剂提供了潜在的绿色替代品。然而,氢油在增强纤维素上的纤维素活性中的作用尚不清楚。该项目的目的是通过利用疏水素的表面活性来改善纤维素解构和修饰,为纳米纤维素生产开发可扩展的,可持续的过程。这项研究将为改善酶促纤维素转化率提供新的工具,从而实现基于纤维素的圆形生物经济性。该项目的激励是由于需要可扩展和可持续性的过程将纤维素生物量转化为纳米纤维素和增值耗材和化学物质。该研究的重点是通过掺入疏水性生物表面活性剂来提高纤维素的酶促水解速率和程度,这些生物表面活性剂似乎可以协同增强纤维素酶的性能。该项目旨在阐明生物表面活性剂增强酶 - 纤维素界面相互作用的机制,从而可以控制纤维素水解和功能化纳米纤维素的动力学。该项目具有三个特定的目标。 AIM 1将检查疏水素如何与纤维素相互作用,以影响表面和材料特性,并确定疏水素如何促进酶促相互作用和与纤维素的周转。 AIM 2将建立了解氢燃料的进化多样性如何导致纤维素和酶吸附的差异。这些知识将用于通过改进的界面相互作用来设计新型的疏水素,从而增加纳米纤维素的产生。 AIM 3将评估酶,疏水素和纤维素的整合,以设计合并生物处理的理想条件,考虑使用Trichoderma Reesei作为宿主的体外和基于细胞的系统。最终,这项工作将导致有关生物系统如何修改纤维素解构过程中的界面的新知识,这是开发有效的纳米纤维素生产的酶促方法的关键。这项奖项反映了NSF的法定任务,并认为通过使用基金会的知识分子和更广泛的影响来审查Criteria,通过评估来进行评估。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural Analyses of Substrate–pH Activity Pairing Observed across Diverse Polysaccharide Lyases
不同多糖裂解酶中观察到的底物与 pH 活性配对的结构分析
  • DOI:
    10.1021/acs.biochem.3c00321
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Pandey, Shubhant;Berger, Bryan W.;Acharya, Rudresh
  • 通讯作者:
    Acharya, Rudresh
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bryan Berger其他文献

Bryan Berger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bryan Berger', 18)}}的其他基金

EAGER: Collaborative Research: Design of Inhibitors for ORF7a and ORF7b Oligomerization in COVID-19
EAGER:合作研究:COVID-19 中 ORF7a 和 ORF7b 寡聚化抑制剂的设计
  • 批准号:
    2029895
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Scalable Synthesis of Designed Biosurfactants to Enhance Drug Bioavailability
职业:可扩展合成设计的生物表面活性剂以提高药物生物利用度
  • 批准号:
    1822580
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
PFI:AIR - TT: Green, Biocompatible Enzymatic Disinfectants for Broad-spectrum Inhibition and Removal of Microbial Contamination in Packaged Produce
PFI:AIR - TT:绿色、生物相容性酶消毒剂,用于广谱抑制和去除包装产品中的微生物污染
  • 批准号:
    1701059
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
PFI:AIR - TT: Green, Biocompatible Enzymatic Disinfectants for Broad-spectrum Inhibition and Removal of Microbial Contamination in Packaged Produce
PFI:AIR - TT:绿色、生物相容性酶消毒剂,用于广谱抑制和去除包装产品中的微生物污染
  • 批准号:
    1801612
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SNM-IS: Scalable Biomineralization of Functional Oxide Nanoparticles and Nanostructures for Environmental and Energy Applications
SNM-IS:用于环境和能源应用的功能性氧化物纳米颗粒和纳米结构的可扩展生物矿化
  • 批准号:
    1821389
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SNM-IS: Scalable Biomineralization of Functional Oxide Nanoparticles and Nanostructures for Environmental and Energy Applications
SNM-IS:用于环境和能源应用的功能性氧化物纳米颗粒和纳米结构的可扩展生物矿化
  • 批准号:
    1727166
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
I-Corps: Commercialization of an Enzymatic Method for Biofilm Removal
I-Corps:生物膜去除酶法的商业化
  • 批准号:
    1612047
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Scalable Synthesis of Designed Biosurfactants to Enhance Drug Bioavailability
职业:可扩展合成设计的生物表面活性剂以提高药物生物利用度
  • 批准号:
    1452855
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
BRIGE: Hierarchical Design of Membrane-Based Mechanotransduction Systems
BRIGE:基于膜的力传导系统的分层设计
  • 批准号:
    1227924
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

肠出血性大肠杆菌利用sRNA感应肠道环境信号、提高体内致病能力的分子机制的研究
  • 批准号:
    82372267
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
稻米镁元素积累新主效QTL克隆和功能研究及其育种利用
  • 批准号:
    32372095
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
利用费米能区重离子核反应研究热核物质中11B和11C的集团性质
  • 批准号:
    12365018
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
基于生境数量假说的喀斯特山地森林景观异质性对中小型兽类生境利用影响研究
  • 批准号:
    32360333
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
利用海南废弃椰子壳设计制备BCN多孔材料及其吸附重金属离子的研究
  • 批准号:
    52362040
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CLIMA/Collaborative Research: Enhancing Soil-Based Infrastructure Resilience to Climate Change: Harnessing the Potential of Fractured Soil by Adding Biopolymers
CLIMA/合作研究:增强土壤基础设施对气候变化的抵御能力:通过添加生物聚合物来利用破碎土壤的潜力
  • 批准号:
    2332082
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CLIMA/Collaborative Research: Enhancing Soil-Based Infrastructure Resilience to Climate Change: Harnessing the Potential of Fractured Soil by Adding Biopolymers
CLIMA/合作研究:增强土壤基础设施对气候变化的抵御能力:通过添加生物聚合物来利用破碎土壤的潜力
  • 批准号:
    2332081
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
  • 批准号:
    2312689
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
  • 批准号:
    2324033
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Education DCL: EAGER: Harnessing the Power of Large Language Models in Digital Forensics Education at MSI and HBCU
合作研究:教育 DCL:EAGER:在 MSI 和 HBCU 的数字取证教育中利用大型语言模型的力量
  • 批准号:
    2333951
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了