Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices

合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台

基本信息

  • 批准号:
    2324033
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

Non-technical Description: Applying the concept of topology to solid state systems has revolutionized our understanding of quantum phenomena and materials, and inspired the design of new functionalities in electronic, atomic, photonic, mechanical, and acoustic systems. For instance, topological insulators (TIs) are a class of materials that are electrically insulating in the bulk but host conductive surface states that are immune to impurities. These states enable near-perfect devices from imperfect interfaces, which are important for both conventional and quantum information technology. However, there exist a number of critical challenges in current TI materials that must be addressed before realizing their full potential. This project aims at overcoming these challenges by focusing on and further developing a new class of materials, quasi-one-dimensional (quasi-1D) TIs for novel electronic, optoelectronic and sensing functionalities, via an iterative loop of theoretical modeling and prediction, material synthesis, characterization and device prototyping. Successful implementation of the program will advance knowledge and technology on topological materials and ultimately pave the way for transforming next-generation information technology and sustainable energy solutions. Major educational activities will be integrated into the research activities by increasing participation of under-represented groups, mentoring undergraduate and graduate students in STEM disciplines, performing public outreach by team-visiting local public schools and leveraging the team’s Youtube channel and twitter, organizing virtual workshops, creating a new online course, providing a new face to physics and materials science with two women in leadership positions in this team, and providing open access to research and education outputs to the technical community and general public.Technical Description: To date, most of the identified topological insulators (TIs) are either strongly bonded bulk materials or layered van der Waals materials. Despite their richness, fundamental obstacles and limitations exist in exhibiting the decisive properties and realizing the full promise of TIs, such as the restriction of surface Dirac cones to a specific cleavage plane, weak electronic interactions and limited tunability. Remarkably, a quasi-1D structure promises to overcome these challenges. The goals of this project include prediction, design, synthesis, and control of topological phases in quasi-1D topological materials, design and demonstration of emergent materials, functionalities, and devices, including moiré quasi-1D TIs, stable and high temperature quantum spin Hall (QSH) insulators, and quantum intelligent sensors. The initial focus will be on the quasi-1D bismuth halides and will expand to include other selected quasi-1D materials families through synergistic and iterative collaborations. Through complementary expertise and concerted efforts on theory and computation, material synthesis, spin- and angle-resolved photoemission spectroscopy, nanofabrication, quantum transport, and neutron and x-ray scattering, and collaboration with researchers in academia, industry and government, the project is expected to actualize the potential offered by quasi-1D materials in the discovery or realization of novel topological materials and phases, topological phase transitions and control, room-temperature QSH effect, moiré quasi-1D topological meta-materials, and all-in-one intelligent photodetectors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:将拓扑概念应用于固态系统彻底改变了我们对量子现象和材料的理解,并激发了电子、原子、光子、机械和声学系统新功能的设计。 TI)是一类整体电绝缘但具有不受杂质影响的导电表面态的材料,这些状态可以通过不完美的界面实现近乎完美的器件,这对于传统信息技术和量子信息技术都很重要。然而,当前 TI 材料存在许多关键挑战,在充分发挥其潜力之前必须解决这些挑战,该项目旨在通过专注于并进一步开发一类新型材料,即准一维(准一维)材料来克服这些挑战。 1D)通过理论建模和预测、材料合成、表征和器件原型设计的迭代循环,实现新型电子、光电和传感功能的TI,该计划的成功实施将推进拓扑材料的知识和技术,并最终为拓扑材料的发展奠定基础。通过增加代表性不足的群体的参与、指导本科生和研究生 STEM 学科、通过团队访问当地公众进行公共宣传,将重大教育活动纳入研究活动。学校并利用该团队的 Youtube 频道和 Twitter,组织虚拟研讨会,创建新的在线课程,为物理和材料科学提供新的面貌,其中两名女性担任该团队的领导职务,并为学生提供研究和教育成果的开放获取技术社区和一般技术描述:迄今为止,大多数已确定的拓扑绝缘体(TI)要么是强粘结块体材料,要么是层状范德华材料,尽管它们丰富,但在展示决定性特性和实现其全部前景方面存在根本障碍和限制。 TI,例如表面狄拉克锥体对特定解理面的限制、弱电子相互作用和有限的可调谐性,值得注意的是,准一维结构有望克服这些挑战。准一维拓扑材料中拓扑相的预测、设计、合成和控制,新兴材料、功能和器件的设计和演示,包括莫尔准一维TI、稳定高温量子自旋霍尔(QSH)绝缘体,以及最初的重点将是准一维卤化铋,并将通过协同和迭代合作扩展到包括其他选定的准一维材料系列。通过在理论与计算、材料合成、自旋和角分辨光电子能谱、纳米加工、量子输运、中子和X射线散射等方面的共同努力,以及与学术界、工业界和政府研究人员的合作,该项目预计将实现准一维材料在发现或实现新型拓扑材料和相、拓扑相变和控制、室温 QSH 效应、莫尔准一维拓扑方面提供的潜力该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fan Zhang其他文献

Critical element prediction of tracheal intubation difficulty: Automatic Mallampati classification by jointly using handcrafted and attention-based deep features
气管插管困难的关键要素预测:联合使用手工和基于注意力的深度特征进行自动 Mallampati 分类
  • DOI:
    10.1016/j.compbiomed.2022.106182
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Fan Zhang;Yuelei Xu;Zhaoyun Zhou;Han Zhang;Ke Yang
  • 通讯作者:
    Ke Yang
GaN-based vertical cavities with all dielectric reflectors and polar and nonpolar orientations
具有所有电介质反射器以及极性和非极性方向的基于 GaN 的垂直腔
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryoko Shimada;Serdal Okur;Fan Zhang;Shopan Din Ahmad Hafiz;Jaesoong Lee;Vitaliy Avrutin;Umit Ozgur;Hadis Morkoc
  • 通讯作者:
    Hadis Morkoc
Molecular evolution of vision-related genes may contribute to marsupial photic niche adaptations
视觉相关基因的分子进化可能有助于有袋动物的光生态位适应
  • DOI:
    10.3389/fevo.2022.982073
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Ran Tian;Han Guo;Zhihong Jin;Fan Zhang;Junpeng Zhao;Inge Seim
  • 通讯作者:
    Inge Seim
Polymorphisms in XPB and XPG subcomplexes of TFIIH is associated with lung cancer risk in a Chinese population: A case-control study
TFIIH XPB 和 XPG 亚复合体的多态性与中国人群肺癌风险相关:病例对照研究
  • DOI:
    10.4103/1995-7645.243105
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sha Xiao;Wenfang Long;Yi-jiang Huang;Shi-cheng Kuang;Chong Meng;Yun-ru Liu;Yu-mei Liu;Zhen Yan;Dee Yu;Fan Zhang
  • 通讯作者:
    Fan Zhang
Determining the Orientation of Ocean-Bottom Seismometers on the Seafloor and Correcting for Polarity Flipping via Polarization Analysis and Waveform Modeling
确定海底地震仪在海底的方向,并通过偏振分析和波形建模校正极性翻转
  • DOI:
    10.1785/0220190239
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Gaohua Zhu;Hongfeng Yang;Fan Zhang;Qingyu You
  • 通讯作者:
    Qingyu You

Fan Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fan Zhang', 18)}}的其他基金

Lignin-based coatings: A novel approach to turn challenges into opportunities for anti-corrosion and anti-wear applications
木质素涂料:一种将防腐和抗磨损应用挑战转化为机遇的新方法
  • 批准号:
    EP/Y022009/1
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Research Grant
I-Corps: Development of decentralized anomaly detection for industrial facilities
I-Corps:工业设施分散式异常检测的开发
  • 批准号:
    2301153
  • 财政年份:
    2022
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: High-dimensional quantum states in two-dimensional material quantum dots
合作研究:二维材料量子点中的高维量子态
  • 批准号:
    2105139
  • 财政年份:
    2021
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
CAREER: Realization, Manipulation, and Interaction of Majorana Kramers Pairs
职业:Majorana Kramers 对的实现、操纵和交互
  • 批准号:
    1945351
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
DMREF Collaborative Research: Establishing the Platform of Quasi-one-dimensional Topological Insulators with Emergent Functionalities
DMREF合作研究:建立具有突发功能的准一维拓扑绝缘体平台
  • 批准号:
    1921581
  • 财政年份:
    2019
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant

相似国自然基金

基于FRET受体上升时间的单分子高精度测量方法研究
  • 批准号:
    22304184
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脂质多聚复合物mRNA纳米疫苗的构筑及抗肿瘤治疗研究
  • 批准号:
    52373161
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
  • 批准号:
    82304416
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细胞硬度介导口腔鳞癌细胞与CD8+T细胞间力学对话调控免疫杀伤的机制研究
  • 批准号:
    82373255
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
乙酸钙不动杆菌上调DUOX2激活PERK/ATF4内质网应激在炎症性肠病中的作用机制研究
  • 批准号:
    82300623
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
  • 批准号:
    2325392
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了