III: Medium: Collaborative Research: Multi-level computational approaches to protein function prediction
III:媒介:协作研究:蛋白质功能预测的多级计算方法
基本信息
- 批准号:2210356
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Proteins are the workhorse molecules of life which participate in nearly every activity of cellular processes, including signal transduction, enzyme catalysis, structural support, bodily movement, and defense against pathogens. Interpretation of specific functional roles that each protein molecule plays in cell is thus critical for us to understand the fundamental principles of the biological processes and to design new drug treatments to regulate the processes for improving human health. The task is however highly non-trivial in modern molecular biology studies. The most accurate method to interpret protein biological functions is through structural biology and biochemistry experiments. But the cost of the experimental studies is high, and the process is too slow for large-scale application due to the involvement of manual skill and data processing. As a result, the majority of proteins in human and other important species remain unknown despite decades of efforts. The lack of genome-wide protein function information has significantly impeded the progress of system biology studies aiming at a comprehensive understanding of the life process. In this project, the investigators plan to develop advanced computational methods for automatic and yet reliable protein function annotations. The developed methods and databases will be freely released to the scientific community, which can be used for large-scale and genome-wide protein function annotation studies. The project will also provide opportunities to promote participations of underrepresented groups, including women and African Americans, in computational biology education and method developments.Built on the assumption that similar sequences have similar function, a routine approach to computational protein function annotations is comparative modeling, which deduces functions of target proteins from known homologous proteins. However, the accuracy and coverage of the approach are limited due to the diversity of gene evolution. Significant progress has been recently achieved in protein 3D structure prediction and the state-of-the-art algorithms can generate high-quality structures for distant-homology proteins with an unprecedented capacity. This project seeks to explore various new ideas to enhance the accuracy of distant-homology protein function annotations by using 3D models from the cutting-edge protein structure predictions, with a focus on ligand-protein binding interactions, gene ontology and post-translational modifications. Meanwhile, thermal motion and intrinsic disordering of protein structures are integrated in the pipelines for better function annotations. While the proposed approaches do not expect to address all the fundamental issues, like the first-principle methods, as of how and why proteins fold and function, the success of the studies should help establish a practical knowledge-based relation of structure and function that can be used for genome-scale applications with models useful for guiding new experimental design, and thus significantly enhance the impact of protein structure modeling on biological studies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dukka KC其他文献
Dukka KC的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dukka KC', 18)}}的其他基金
MRI: Acquisition of a GPU-accelerated cluster for research, training and outreach
MRI:获取 GPU 加速集群用于研究、培训和推广
- 批准号:
2215734 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: ABI Development: Integrated platforms for protein structure and function predictions
合作研究:ABI开发:蛋白质结构和功能预测的集成平台
- 批准号:
2021734 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Multi-level computational approaches to protein function prediction
III:媒介:协作研究:蛋白质功能预测的多级计算方法
- 批准号:
1901086 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
III: Medium: Collaborative Research: Multi-level computational approaches to protein function prediction
III:媒介:协作研究:蛋白质功能预测的多级计算方法
- 批准号:
2003019 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
EAGER: A novel approach to improve template-based multi-domain protein structure prediction
EAGER:一种改进基于模板的多域蛋白质结构预测的新方法
- 批准号:
1647884 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: ABI Development: Integrated platforms for protein structure and function predictions
合作研究:ABI开发:蛋白质结构和功能预测的集成平台
- 批准号:
1564606 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
- 批准号:72374217
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant