Change Point Detection for Data with Network Structure
网络结构数据变点检测
基本信息
- 批准号:2210358
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2023-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Detecting breaks and anomalies in a mechanism that drives the generation of data represents a critical task, due to numerous applications in high-impact areas including health, social, and engineering sciences. This project aims to advance the state of the art of change point analysis for big and complex data, by developing a simple to implement, yet powerful, scalable algorithmic framework, thus providing new tools to examine high-dimensional, long streams for events of interest. The potential application domains of this project include but not limited to occurrence of seizure in brain connectivity data sets, coordinated market and other systemic failures in economic and finance data, and identification of orchestrated malicious activities in computer network streams. The developed algorithms and methodology will be implemented in open-source software, while curated data sets will be made available to the community for use in change point analysis investigations. The project will offer multiple unique opportunities for interdisciplinary research training of the future generation of statisticians and for further enhancement of diversity in mathematical sciences.To achieve the stated goals, the project (i) develops a unified detection framework for change points in complex statistical models for network and high dimensional time streams and (ii) provides a rigorous theoretical analysis of their accuracy in the form of consistency, finite sample bounds, and asymptotic distributions for the change points and other model parameters. The framework leverages a simple, easy to implement two-step strategy, wherein the first step one selects windows of the time series of appropriate length and using a standard exhaustive search strategy identifies at most a single change point in each of them. In the second step, a second search based on a global information criterion is employed to eliminate spurious change points. The strategy exhibits linear complexity in time (and thus matches the fastest available in the literature), yet is simple to implement and theoretically analyze, in particular for complex statistical models that exhibit network and low rank structure. Further, the following issues are rigorously addressed: (i) conditions of identifiability of the model parameters and the change points and (ii) probabilistic guarantees and uncertainty quantification for them in the presence of high dimensionality, network structure, temporal dependence, as well as dependence across data streams.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于在健康,社会和工程科学在内的高影响力领域的应用,驱动数据生成的机制中检测突破和异常是一项关键任务。该项目旨在通过开发一个简单但功能强大,可扩展的算法框架来推动大和复杂数据的变化点分析的状态。该项目的潜在应用领域包括但不限于大脑连通性数据集的癫痫发作,经济和金融数据中的其他系统性失败以及计算机网络流中精心策划的恶意活动的识别。开发的算法和方法将在开源软件中实施,而策划的数据集将提供给社区以供更改点分析调查使用。该项目将为未来一代统计学家的跨学科研究培训提供多个独特的机会,并进一步增强了数学科学的多样性。为了实现既定的目标,该项目(i)为复杂统计模型中的变更点开发了一个统一的检测框架对于网络和高维时流以及(ii),以一致性,有限的样本界限和更改点和其他模型参数的渐近分布形式提供了严格的理论分析。该框架利用一个简单,易于实现的两步策略,其中第一步选择了适当长度的时间序列的窗口,并使用标准的详尽搜索策略最多可以标识每个变化点。在第二步中,采用了基于全球信息标准的第二次搜索来消除虚假的变化点。该策略在时间上表现出线性复杂性(因此与文献中最快的可用性相匹配),但易于实现和理论上分析,特别是对于展示网络和低级结构的复杂统计模型而言。此外,严格解决以下问题:(i)模型参数和变更点的可识别性条件以及(ii)在存在高维度,网络结构,时间依赖性以及概率保证和不确定性量化的情况下跨数据流的依赖性。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评论标准来评估值得支持的。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inference on the Change Point under a High Dimensional Covariance Shift
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:A. Kaul;Hongjin Zhang;K. Tsampourakis;G. Michailidis
- 通讯作者:A. Kaul;Hongjin Zhang;K. Tsampourakis;G. Michailidis
Multiple Change Point Detection in Reduced Rank High Dimensional Vector Autoregressive Models
- DOI:10.1080/01621459.2022.2079514
- 发表时间:2021-09
- 期刊:
- 影响因子:3.7
- 作者:Peiliang Bai;Abolfazl Safikhani;G. Michailidis
- 通讯作者:Peiliang Bai;Abolfazl Safikhani;G. Michailidis
Challenges for Anomaly Detection in Large-Scale Cyber-Physical Systems
大规模信息物理系统中异常检测的挑战
- DOI:10.1162/99608f92.7b8b6a89
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Michailidis, George
- 通讯作者:Michailidis, George
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Michailidis其他文献
Statistica Sinica Preprint No: SS-2022-0323
《统计》预印本编号:SS-2022-0323
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Abhishek Kaul;George Michailidis;Statistica Sinica - 通讯作者:
Statistica Sinica
George Michailidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Michailidis', 18)}}的其他基金
ATD: Spatio-Temporal Modeling for Identifying Changes in Land Use
ATD:识别土地利用变化的时空模型
- 批准号:
2334735 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Change Point Detection for Data with Network Structure
网络结构数据变点检测
- 批准号:
2348640 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319552 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319593 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
ATD: Spatio-Temporal Modeling for Identifying Changes in Land Use
ATD:识别土地利用变化的时空模型
- 批准号:
2124507 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CDS&E: Statistical Methodology for Analysis and Forecasting with Large Scale Temporal Data
CDS
- 批准号:
1821220 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
ATD: Collaborative Research: Extremal Dependence and Change-Point Detection Methods for High-Dimensional Data Streams with Applications to Network Cybersecurity
ATD:协作研究:高维数据流的极端依赖性和变点检测方法及其在网络网络安全中的应用
- 批准号:
1830175 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
BIGDATA: Collaborative Research: IA: F: Too Interconnected to Fail? Network Analytics on Complex Economic Data Streams for Monitoring Financial Stability
BIGDATA:协作研究:IA:F:互联性太强以至于不会失败?
- 批准号:
1632730 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CyberSEES: Type 2: Collaborative Research: Tenable Power Distribution Networks
CyberSEES:类型 2:协作研究:可维持的配电网络
- 批准号:
1540093 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Statistical Methodology for Network based Integrative Analysis of Omics Data
合作研究:基于网络的组学数据综合分析统计方法
- 批准号:
1545277 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
示例引导的专业文本知识观点推断
- 批准号:62376138
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于多体散射观点的微纳机电系统中多体Casimir相互作用研究
- 批准号:12304396
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于序列化视觉内容和文字信息联合观点预测的社交媒体视频评论方法研究
- 批准号:62302474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
言语交际中的观点采择老化:基于认知控制的行为干预与神经调控
- 批准号:32371112
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
具异构逻辑约束的社交网络观点动力学分析与控制研究
- 批准号:62376242
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Change Point Detection for Data with Network Structure
网络结构数据变点检测
- 批准号:
2348640 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Fast online change point detection utilizing matrix factorisation
利用矩阵分解进行快速在线变化点检测
- 批准号:
2872651 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
Validation of Lens Beta-Amyloid as a Novel Biomarker for Early Detection of Alzheimer's Disease at the Boston University Alzheimer's Disease Research
波士顿大学阿尔茨海默病研究中心验证晶状体 β-淀粉样蛋白作为早期检测阿尔茨海默病的新型生物标志物
- 批准号:
10591150 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
High performance wearable body odor sensor arrays for disease detection and monitoring
用于疾病检测和监测的高性能可穿戴体味传感器阵列
- 批准号:
10674716 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Neurovascular functions of a small RNA Snord118-mediated ribosome biogenesis
小RNA Snord118 介导的核糖体生物发生的神经血管功能
- 批准号:
10355240 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别: