CDS&E: Statistical Methodology for Analysis and Forecasting with Large Scale Temporal Data
CDS
基本信息
- 批准号:1821220
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technological advances have enabled the collection of large, complex data that evolve over time. Such data also exhibit heterogeneity across multiple entities (e.g. countries, patients) and on many occasions are sampled collected) at different frequencies. Hence, there is a strong need for developing and tailoring data analysis techniques to the specific requirements imposed by the presence of temporal dependence across multiple variables and also address varying sampling frequency and heterogeneity issues. The statistical learning models, and associated analysis methods developed in this project would be applicable across a wide range of fields, including analysis and forecasting with macroeconomic and financial data and in neuroscience. Empirical work based on the work of this project would provide insights on functional connectivity of brain regions, but also quantify the degree of heterogeneity of subjects suffering from a common disease. They would also be useful to policy makers and financial regulators for devising monitoring schemes that assess stress conditions across markets. Further, we expect significant technology transfer to other application areas, such as environmental sciences where similar types of data, characterized by heterogeneity and mixed frequency sampling, are available. To address the challenges of temporal dependence, heterogeneity and varying sampling frequency in the data this project would: (i) develop and investigate Bayesian versions of Vector Autoregressive (VAR) models for high-dimensional time series data, based on novel prior distributions, (ii) introduce structured sparsity in VAR models and also incorporate exogenous variables, (iii) develop approximate dynamic factor models that can accommodate strongly correlated idiosyncratic components, (iv) develop methods for joint estimation of related VAR models and finally (v) develop Bayesian methodology for handling mixed frequency time series data. A strong emphasis is placed on providing uncertainty quantification of the model parameters, which is particularly important in applications and is usually lacking in many modern methods for large data sets. This project would advance the state of the art for Big Data settings involving a large number of time series both at the modeling, computational and inference fronts. Finally, doctoral students would receive mentoring in novel, timely topics on time series modeling, analysis and forecasting and course curriculum would be advanced.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
技术进步使得随着时间的流逝而发展的大型,复杂的数据。这些数据还以不同的频率在多个实体(例如国家,患者)和许多情况下进行采样的多个实体(例如,患者)表现出异质性。因此,非常需要开发和调整数据分析技术,以跨多个变量存在时间依赖性所施加的特定要求,并解决不同的采样频率和异质性问题。 该项目中开发的统计学习模型以及相关的分析方法将适用于广泛的领域,包括分析和预测宏观经济和财务数据以及神经科学。基于该项目的工作的经验工作将提供有关大脑区域功能连通性的见解,但也量化了患有常见疾病的受试者的异质性程度。它们也对制定者和财务监管机构也很有用,可以设计监视各个市场压力条件的计划。此外,我们预计将大量的技术转移到其他应用领域,例如环境科学,在环境科学中,具有异质性和混合频率采样的类型类型的数据类型。 To address the challenges of temporal dependence, heterogeneity and varying sampling frequency in the data this project would: (i) develop and investigate Bayesian versions of Vector Autoregressive (VAR) models for high-dimensional time series data, based on novel prior distributions, (ii) introduce structured sparsity in VAR models and also incorporate exogenous variables, (iii) develop approximate dynamic factor models that can accommodate strongly correlated特质组件,(iv)开发了相关VAR模型联合估计的方法,最后(V)开发了用于处理混合频率时间序列数据的贝叶斯方法。非常重点是提供模型参数的不确定性量化,这在应用程序中尤为重要,并且通常在许多现代方法中缺乏大型数据集。该项目将推动大数据设置的最新技术,涉及建模,计算和推理方面的大量时间序列。最后,博士生将在时间序列建模,分析和预测和课程课程中获得小说,及时的主题的指导。该奖项反映了NSF的法定任务,并认为通过基金会的知识分子的智力优点和更广泛的影响,认为值得通过评估来获得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Regularized Estimation of High-dimensional Factor-Augmented Vector Autoregressive (FAVAR) Models
高维因子增强向量自回归 (FAVAR) 模型的正则化估计
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:6
- 作者:Jiahe Lin, George Michailidis
- 通讯作者:Jiahe Lin, George Michailidis
Multiple Change Points Detection in Low Rank and Sparse High Dimensional Vector Autoregressive Models
低秩稀疏高维向量自回归模型中的多变化点检测
- DOI:10.1109/tsp.2020.2993145
- 发表时间:2020
- 期刊:
- 影响因子:5.4
- 作者:Bai, Peiliang;Safikhani, Abolfazl;Michailidis, George
- 通讯作者:Michailidis, George
Low Rank and Structured Modeling of High-Dimensional Vector Autoregressions
- DOI:10.1109/tsp.2018.2887401
- 发表时间:2019-03-01
- 期刊:
- 影响因子:5.4
- 作者:Basu, Sumanta;Li, Xianqi;Michailidis, George
- 通讯作者:Michailidis, George
Strong selection consistency of Bayesian vector autoregressive models based on a pseudo-likelihood approach
基于伪似然方法的贝叶斯向量自回归模型的强选择一致性
- DOI:10.1214/20-aos1992
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Ghosh, Satyajit;Khare, Kshitij;Michailidis, George
- 通讯作者:Michailidis, George
Regularized joint estimation of related vector autoregressive models
- DOI:10.1016/j.csda.2019.05.007
- 发表时间:2019-11
- 期刊:
- 影响因子:1.8
- 作者:Andrey Skripnikov;G. Michailidis
- 通讯作者:Andrey Skripnikov;G. Michailidis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Michailidis其他文献
Asymptotics for <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si4.gif" display="inline" overflow="scroll" class="math"><mi>p</mi></math>-value based threshold estimation under repeated measurements
- DOI:
10.1016/j.jspi.2016.01.009 - 发表时间:
2016-07-01 - 期刊:
- 影响因子:
- 作者:
Atul Mallik;Bodhisattva Sen;Moulinath Banerjee;George Michailidis - 通讯作者:
George Michailidis
Statistica Sinica Preprint No: SS-2022-0323
《统计》预印本编号:SS-2022-0323
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Abhishek Kaul;George Michailidis;Statistica Sinica - 通讯作者:
Statistica Sinica
George Michailidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Michailidis', 18)}}的其他基金
ATD: Spatio-Temporal Modeling for Identifying Changes in Land Use
ATD:识别土地利用变化的时空模型
- 批准号:
2334735 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Change Point Detection for Data with Network Structure
网络结构数据变点检测
- 批准号:
2348640 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319552 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319593 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Change Point Detection for Data with Network Structure
网络结构数据变点检测
- 批准号:
2210358 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
ATD: Spatio-Temporal Modeling for Identifying Changes in Land Use
ATD:识别土地利用变化的时空模型
- 批准号:
2124507 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Extremal Dependence and Change-Point Detection Methods for High-Dimensional Data Streams with Applications to Network Cybersecurity
ATD:协作研究:高维数据流的极端依赖性和变点检测方法及其在网络网络安全中的应用
- 批准号:
1830175 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
BIGDATA: Collaborative Research: IA: F: Too Interconnected to Fail? Network Analytics on Complex Economic Data Streams for Monitoring Financial Stability
BIGDATA:协作研究:IA:F:互联性太强以至于不会失败?
- 批准号:
1632730 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CyberSEES: Type 2: Collaborative Research: Tenable Power Distribution Networks
CyberSEES:类型 2:协作研究:可维持的配电网络
- 批准号:
1540093 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Statistical Methodology for Network based Integrative Analysis of Omics Data
合作研究:基于网络的组学数据综合分析统计方法
- 批准号:
1545277 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
脉冲二氧化碳电催化体系的非平衡统计动力学
- 批准号:22373090
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
统计过程监测理论在肠道菌群健康指数构建过程中的适用性研究
- 批准号:32372345
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
大型复杂流数据的若干统计推断问题
- 批准号:12371274
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于统计分布的超灵敏/单分子表面增强光谱定量检测研究
- 批准号:12374028
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
环境混合污染物的健康效应统计分析方法研究
- 批准号:82373690
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Naturalistic Social Communication in Autistic Females: Identification of Speech Prosody Markers
自闭症女性的自然社交沟通:语音韵律标记的识别
- 批准号:
10823000 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Time series clustering to identify and translate time-varying multipollutant exposures for health studies
时间序列聚类可识别和转化随时间变化的多污染物暴露以进行健康研究
- 批准号:
10749341 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别: