ATD: Spatio-Temporal Modeling for Identifying Changes in Land Use
ATD:识别土地利用变化的时空模型
基本信息
- 批准号:2124507
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modeling land development dynamics represents a key problem in urban and regional planning. Land use changes have impact on the environment, the quality of life, public finances and economic development trajectories of local communities and larger scale regions. Further, there is a need to assess and quantify threats posed through multiple scenarios about future land developments. Land use models that account both for key drivers of human behavior, as well as fine scale spatial and temporal dependencies are valuable tools to various stakeholders for this task. The project aims to develop methods and open source software tools for modeling, predicting and assessing threats in land use change. It will provide various stakeholders, community organizations, regional planners, policymakers, businesses as well as diverse scientific fields with new capabilities to gain insights into key drivers of land use changes and also assess the environmental, economic and social impact of both short and longer term developments and threats. In addition, the project provides research training opportunities for graduate students. To achieve the stated goals, the project leverages a modeling framework that enables integration of structural economic geography and related models, with fine scale spatiotemporal data driven models. In addition it rigorously addresses the following technical issues: (i) development of fast estimation and statistical inference methods for the proposed models, (ii) development of techniques to perform unsupervised learning tasks including identifying regime changes in the parameters of the models and clustering regions with similar land use developments based on dynamic programming algorithms, and (iii) development of a framework that can incorporate projected paths from scenarios outlining future threats, and predict the corresponding land use outcomes, as well as assess their impact. The methodology will be tested and illustrated through a highly dis-aggregated spatiotemporal data set that contains detailed information for each land parcel in the state of Florida, assembled and curated from county tax auditor databases.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
建模土地发展动态是城市和区域规划中的一个关键问题。土地使用变化会影响当地社区和大规模地区的环境,生活质量,公共财政和经济发展轨迹。此外,有必要通过多种关于未来土地发展的情况来评估和量化威胁。土地使用模型既说明人类行为的关键驱动力,又是详尽的空间和时间依赖性,这对各种利益相关者来说都是有价值的工具。 该项目旨在开发用于建模,预测和评估土地使用变化威胁的方法和开源软件工具。它将为各种利益相关者,社区组织,区域规划师,政策制定者,企业以及多样化的科学领域提供新的能力,以深入了解土地利用变化的主要驱动力,并评估短期和更长期限的发展和长期发展和威胁的环境,经济和社会影响。此外,该项目为研究生提供了研究培训机会。 为了实现既定的目标,该项目利用一个建模框架,可以将结构经济地理和相关模型与精细的时空数据驱动模型进行整合。此外,它严格解决以下技术问题:(i)开发提议模型的快速估计和统计推理方法,(ii)开发执行无监督的学习任务,包括确定模型参数和聚类区域的参数中的制度变化,并具有基于动态编程式途径的相似土地使用的开发,并能够符合(III)的未来(iii),并将威胁并预测相应的土地使用结果,并评估其影响。该方法将通过高度散布的时空数据集进行测试和说明,该数据集包含佛罗里达州每个土地包裹的详细信息,并由县税务审计师数据库组装和策划。这奖反映了NSF的法规使命,并认为通过基金会的知识优点和广泛的crietia crietia crietia crietia crietia crietia crietia crietia crietia crietia crietia crietia cristia cripitia cripitia cristia cristia cristia cristia and crigitia cristia cristia cristia cristia cripitia cristia crigitia均值得一评论。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A General Modeling Framework for Network Autoregressive Processes
- DOI:10.1080/00401706.2023.2203184
- 发表时间:2021-10
- 期刊:
- 影响因子:2.5
- 作者:Hang Yin;Abolfazl Safikhani;G. Michailidis
- 通讯作者:Hang Yin;Abolfazl Safikhani;G. Michailidis
Machine learning application to spatio-temporal modeling of urban growth
- DOI:10.1016/j.compenvurbsys.2022.101801
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Yu-Seung Kim;Abolfazl Safikhani;Emre Tepe
- 通讯作者:Yu-Seung Kim;Abolfazl Safikhani;Emre Tepe
Spatio-temporal modeling of parcel-level land-use changes using machine learning methods
- DOI:10.1016/j.scs.2023.104390
- 发表时间:2023-03
- 期刊:
- 影响因子:11.7
- 作者:Emre Tepe;Abolfazl Safikhani
- 通讯作者:Emre Tepe;Abolfazl Safikhani
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Michailidis其他文献
Asymptotics for <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si4.gif" display="inline" overflow="scroll" class="math"><mi>p</mi></math>-value based threshold estimation under repeated measurements
- DOI:
10.1016/j.jspi.2016.01.009 - 发表时间:
2016-07-01 - 期刊:
- 影响因子:
- 作者:
Atul Mallik;Bodhisattva Sen;Moulinath Banerjee;George Michailidis - 通讯作者:
George Michailidis
Statistica Sinica Preprint No: SS-2022-0323
《统计》预印本编号:SS-2022-0323
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Abhishek Kaul;George Michailidis;Statistica Sinica - 通讯作者:
Statistica Sinica
George Michailidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Michailidis', 18)}}的其他基金
ATD: Spatio-Temporal Modeling for Identifying Changes in Land Use
ATD:识别土地利用变化的时空模型
- 批准号:
2334735 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Change Point Detection for Data with Network Structure
网络结构数据变点检测
- 批准号:
2348640 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319552 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319593 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Change Point Detection for Data with Network Structure
网络结构数据变点检测
- 批准号:
2210358 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CDS&E: Statistical Methodology for Analysis and Forecasting with Large Scale Temporal Data
CDS
- 批准号:
1821220 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
ATD: Collaborative Research: Extremal Dependence and Change-Point Detection Methods for High-Dimensional Data Streams with Applications to Network Cybersecurity
ATD:协作研究:高维数据流的极端依赖性和变点检测方法及其在网络网络安全中的应用
- 批准号:
1830175 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
BIGDATA: Collaborative Research: IA: F: Too Interconnected to Fail? Network Analytics on Complex Economic Data Streams for Monitoring Financial Stability
BIGDATA:协作研究:IA:F:互联性太强以至于不会失败?
- 批准号:
1632730 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CyberSEES: Type 2: Collaborative Research: Tenable Power Distribution Networks
CyberSEES:类型 2:协作研究:可维持的配电网络
- 批准号:
1540093 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Statistical Methodology for Network based Integrative Analysis of Omics Data
合作研究:基于网络的组学数据综合分析统计方法
- 批准号:
1545277 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
控制灌溉水稻水分响应规律与需水时空动态特征立体感知方法研究
- 批准号:52309051
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于生产-消费多元视角的时空动态化碳足迹建模方法研究
- 批准号:42303085
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
可爱感知时空动态脑机制及其在抑郁症早期诊断与干预中的应用研究
- 批准号:62303445
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态融合的云南鸟类群落时空分布格局的关键技术研究
- 批准号:32360388
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
北方地区城市“地块单元”热环境时空格局形成机制及优化策略研究
- 批准号:52300236
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
ATD: Predictive Anomaly Detection for Spatio-Temporal Data with Multidimensional Persistence
ATD:具有多维持久性的时空数据的预测异常检测
- 批准号:
2220613 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
ATD: Spatio-Temporal Modeling for Identifying Changes in Land Use
ATD:识别土地利用变化的时空模型
- 批准号:
2334735 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
ATD: Multiscale Anomaly Detection in Spatio-Temporal Multilayer Networks Encoding Human Mobility
ATD:编码人类移动性的时空多层网络中的多尺度异常检测
- 批准号:
2319250 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
ATD: Multiscale Anomaly Detection in Spatio-Temporal Multilayer Networks Encoding Human Mobility
ATD:编码人类移动性的时空多层网络中的多尺度异常检测
- 批准号:
2401276 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Robust, Accurate and Efficient Graph-Structured RNN for Spatio-Temporal Forecasting and Anomaly Detection
合作研究:ATD:用于时空预测和异常检测的鲁棒、准确和高效的图结构 RNN
- 批准号:
2110145 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant