Collaborative Research: Elements: Monitoring Earth Surface Deformation with the Next Generation of InSAR Satellites: GMTSAR
合作研究:要素:利用下一代 InSAR 卫星监测地球表面形变:GMTSAR
基本信息
- 批准号:2209808
- 负责人:
- 金额:$ 15.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Understanding the processes of earthquakes, volcanoes and hydrological changes, and their associated hazards is a top priority of the solid earth research community and USGS, due to the potential for societal disruption, financial consequences, and possible loss of life if not prepared for adequately. This requires not only long-term estimates of such processes and their hazards within a socially relevant timeframe, but also an evaluation on the impact of human activities over the Earth’s surface and interior. These estimates and evaluations hinge on the capability of accurately measuring how the Earth’s surface changes and deforms over time. For example, it is important to know how fast the seismic moment is accumulating over the San Andreas fault system, as that will tell us where and when will we be expecting the next destructive earthquake. This requires us to be able to measure the deformation that spans hundreds of kilometers at an accuracy of 0.5 mm/yr with resolution better than 10 km. Interferometric Synthetic Aperture Radar (InSAR) is the best technique for this crucial task, as the current remote sensing satellite observations that inform this technique come with broad-scale coverage, at low-cost, regardless of weather and on a regular basis. However, the upcoming new InSAR missions are raising a new challenge: how to efficiently handle drastically increasing amounts of data (~80 TB per day for the NISAR mission). To answer this challenge, the freely-available InSAR processing software GMTSAR is developing robust and efficient approaches to take full advantage of the satellite-generated data for both scientific research and societal applications. The main innovations of this project are to enable the cloud computing capabilities, transfer to newer generation of programing language, and keep engaging more users to build their own data processing strategies using this software. The developers will ensure that users from across the globe have the support they need for access to state-of-the-art processing techniques, and will continue improving the documentation, example datasets and tutorials to strengthen the foundation for education in the field of space geodesy. Interferometric Synthetic Aperture Radar (InSAR) is a powerful technique for measuring small displacements (1-10 cm) of the surface of the earth including those caused by tectonic loading, earthquakes, volcanoes, landslides, glaciers, ground fluid injection/withdrawal and underground nuclear tests. Over the past decade, a freely available, open-source software has been developed to harness these valuable datasets, which is called GMTSAR. During past investigations, this software has been equipped with the power to capitalize on the freely available ~1200 TB per year of data from Sentinel-1 satellite operated by the European Space Agency, and was provided as a robust research tool to the user base. The upcoming NISAR mission operated by NASA and ISRO, will dramatically increase the amount of available SAR data to over 30,000 TBytes per year. While this is a boon for InSAR science, it presents two main processing hurdles: how can one achieve maximum productivity with these increasing large datasets, while still preserving the accuracy of the measurements and how can one best facilitate broad user access to this trove of data. This project addresses these challenges by (1) enabling GMTSAR to permit rapid processing of very large data sets in a cloud computing environment, and (2) further expanding the usage of these InSAR data in both research and student communities by integrating with Python and streamlining processing modules to simplify user interactions.Facilitating the processing of large InSAR datasets with enhanced GMTSAR software will allow solid earth and cryosphere scientists to utilize the massive InSAR data sets to advance their interdisciplinary investigations, including global observations of volcanoes, estimates of seismic hazard through strain-rate mapping, monitoring urban infrastructure, tracking ice sheet movements, and detecting coastal subsidence. The global reach of InSAR science will be advanced by streamlined processing modules that are accessible to both specialists and students alike. In addition, the improvements we propose to make to specific modules, including the development of routine integration with Global Navigation Satellite System (GNSS) data and the combination of line-of-sight (LOS) InSAR measurements from both right-looking Sentinel-1 and left-looking NISAR satellites, will improve the accuracy of measurements to enable full 3D vector displacement time series analyses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解地震,火山和氢变化的过程以及它们相关的危害是固体地球研究界和USGS的重中之重,因为如果没有充分准备,社会破坏,财务后果和可能的生命丧失可能会造成。这不仅需要在社会相关的时间范围内对此类过程及其危害的长期估计,而且还需要对人类活动对地球表面和内部的影响进行评估。这些估计和评估取决于准确测量地球表面如何随着时间变化和变形的能力。例如,重要的是要知道地震时刻在圣安德烈亚斯断层系统上积累了多快,这将告诉我们我们在哪里以及何时期待下一次破坏性地震。这要求我们能够以0.5毫米/年的精度测量数百公里的变形,分辨率高于10 km。干涉合成孔径雷达(INSAR)是这项关键任务的最佳技术,因为当前的遥感卫星观测值将这项技术告知该技术,无论天气和定期天气如何,都以较低的范围覆盖。但是,即将到来的新内在任务正在提出一个新的挑战:如何有效地处理大量数据(Nisar Mission每天约80 TB)。为了应对这一挑战,自由利用的内在处理软件GMTSAR正在开发强大而有效的方法,以充分利用科学研究和社交应用的卫星生成的数据。该项目的主要创新是启用云计算功能,转移到新产生的编程语言,并继续吸引更多用户使用此软件来构建自己的数据处理策略。开发人员将确保来自全球的用户获得访问最先进处理技术所需的支持,并将继续改进文档,示例数据集和教程,以增强在太空土生领域的教育基础。干涉合成孔径雷达(INSAR)是一种强大的技术,用于测量地球表面的较小位移(1-10厘米),包括由构造载荷,地震,火山,山地滑坡,冰川,地下流体/戒断和地下核测试引起的。在过去的十年中,已经开发了一种免费的可用的开源软件来利用这些有价值的数据集,这称为GMTSAR。在过去的调查中,该软件与欧洲航天局经营的Sentinel-1卫星数据的免费可用性相同,可以利用〜1200 TB的数据,并作为用户群提供了强大的研究工具。 NASA和ISRO执行的即将到来的Nisar任务将显着将可用的SAR数据数量增加到每年超过30,000个TBYTE。尽管这是Insar科学的福音,但它提出了两个主要的处理障碍:如何通过这些增加的大型数据集实现最大的生产力,同时仍然保留了测量的准确性,以及如何最好地促进广泛的用户访问此数据的数据。该项目通过(1)通过(1)使GMTSAR允许在云计算环境中快速处理非常大的数据集,并且(2)进一步扩展了研究和学生社区中这些InsAR数据的使用,通过与Python进行集成,并通过整合Python,并简化了与较大的用户相互作用,从而使GRADISS稳固地进行了整个软件。利用大量的内在数据集来推进其跨学科投资,包括全球对火山的观察,通过应变率图估计地震危害,监测城市基础设施,跟踪冰片运动以及检测沿海的沉积。 InSAR科学的全球覆盖范围将通过简化专家和学生都可以访问的处理模块来提高。此外,我们提出的改进是为特定模块进行的,包括与全球导航卫星系统(GNSS)数据的日常整合以及从右现在的Nisar-1和剩下的Nisar卫星均可提高相对的统计信息的准确性,从右前哨1和左前哨卫星中均可提高3DDD vector的准确性。使命,并被认为是通过基金会的知识分子优点和更广泛影响的审查标准通过评估值得支持的。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Constraining Fault Damage Zone Properties From Geodesy: A Case Study Near the 2019 Ridgecrest Earthquake Sequence
从大地测量学中约束断层破坏区特性:2019 年 Ridgecrest 地震序列附近的案例研究
- DOI:10.1029/2022gl101692
- 发表时间:2023
- 期刊:
- 影响因子:5.2
- 作者:Xu, Xiaohua;Liu, Dunyu;Lavier, Luc
- 通讯作者:Lavier, Luc
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Sandwell其他文献
Strength of the lithosphere of the Galilean satellites
- DOI:
10.1016/j.icarus.2006.01.015 - 发表时间:
2006-07-01 - 期刊:
- 影响因子:
- 作者:
Karen Luttrell;David Sandwell - 通讯作者:
David Sandwell
David Sandwell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Sandwell', 18)}}的其他基金
Determining the origin of Haxby lineaments using magnetotelluric and bathymetric data
使用大地电磁和测深数据确定哈克斯比轮廓的起源
- 批准号:
2211895 - 财政年份:2022
- 资助金额:
$ 15.49万 - 项目类别:
Continuing Grant
Elements: Software - Harnessing the InSAR Data Revolution: GMTSAR
要素:软件 - 利用 InSAR 数据革命:GMTSAR
- 批准号:
1834807 - 财政年份:2018
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
Seafloor Geodesy Using Sidescan Sonar: Analysis of the NGDC Archive
使用侧扫声纳进行海底大地测量:NGDC 档案分析
- 批准号:
1536386 - 财政年份:2015
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
Collaborative Research: Improving the Generic Mapping Tools for Seismology, Geodesy, Geodynamics and Geology
合作研究:改进地震学、大地测量学、地球动力学和地质学的通用制图工具
- 批准号:
1347204 - 财政年份:2014
- 资助金额:
$ 15.49万 - 项目类别:
Continuing Grant
Collaborative Research: Strain Rate and Moment Accumulation Rate along the San Andreas Fault System from InSAR and GPS
合作研究:InSAR 和 GPS 沿圣安地列斯断层系统的应变率和力矩累积率
- 批准号:
1147435 - 财政年份:2012
- 资助金额:
$ 15.49万 - 项目类别:
Continuing Grant
A Factor of 2 Improvement in Global Marine Gravity from Cryosat, Jason-1, and Envisat
Cryosat、Jason-1 和 Envisat 将全球海洋重力提高了 2 倍
- 批准号:
1128801 - 财政年份:2012
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
High-Resolution Gravity, Tomography, and Seafloor Roughness
高分辨率重力、断层扫描和海底粗糙度
- 批准号:
0825045 - 财政年份:2008
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
Observations and Modeling of Shallow Fault Creep Along the San Andreas Fault Zone
圣安德烈亚斯断层带浅层断层蠕变的观测和模拟
- 批准号:
0811772 - 财政年份:2008
- 资助金额:
$ 15.49万 - 项目类别:
Continuing Grant
High-Resolution Marine Gravity, Seafloor Topography, and Seafloor Roughness
高分辨率海洋重力、海底地形和海底粗糙度
- 批准号:
0326707 - 财政年份:2003
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
Synthetic Aperture Sonar for High Resolution Mapping and Change Detection
用于高分辨率测绘和变化检测的合成孔径声纳
- 批准号:
0331549 - 财政年份:2003
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
相似国自然基金
杨柳坪超大型Cu-Ni-PGE矿床硫化物熔体固化过程铂族元素地球化学行为精细研究
- 批准号:42303019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
深海沉积物中稀土元素超常富集机制――基于富稀土沉积物与水岩实验的对比研究
- 批准号:42372116
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
微量元素钒调控能量代谢用于监控结直肠癌治疗及转移抑制的机制研究
- 批准号:62305121
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
稻米镁元素积累新主效QTL克隆和功能研究及其育种利用
- 批准号:32372095
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于可控同位素中子源的月表元素探测机制与载荷实现关键技术研究
- 批准号:42374226
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Elements: VLCC-States: Versioned Lineage-Driven Checkpointing of Composable States
协作研究:元素:VLCC-States:可组合状态的版本化谱系驱动检查点
- 批准号:
2411387 - 财政年份:2024
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Linking geochemical proxy records to crustal stratigraphic context via community-interactive cyberinfrastructure
合作研究:要素:通过社区交互式网络基础设施将地球化学代理记录与地壳地层背景联系起来
- 批准号:
2311092 - 财政年份:2023
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Lattice QCD software for nuclear physics on heterogeneous architectures
合作研究:Elements:用于异构架构核物理的 Lattice QCD 软件
- 批准号:
2311430 - 财政年份:2023
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
- 批准号:
2311757 - 财政年份:2023
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
- 批准号:
2329189 - 财政年份:2023
- 资助金额:
$ 15.49万 - 项目类别:
Standard Grant