Transit signal priority control can effectively improve travel efficiency and service quality of public transportation system. Most previous studies only focused on optimizing the single performance index (travel delay minimization, speed maximization, etc.), could not coordinate multiple paths along long-distance arterials, and ignored overflow control at complex signalized intersections..Firstly, this research investigates the reconstruction of high-frequency vehicle trajectories for cars and buses at the high-demand transit corridor, and presents a novel comprehensive traffic performance index with considering the ecological environment by integrating travel delay, emission and energy consumption. And then, an off-line progression model with non-linear multi-paths coordination is developed to concurrently determine the long-distance path decomposition location and optimize signal parameters after predicting vehicle spatial-temporal kinematic formulation. The proposed method can provide most vehicles smooth and continuous driving through the corridor under the optimum control of the new performance index. Thirdly, a real-time cooperative priority control of integrating signal suppression and bus speed recommendation is formulated at bottleneck intersections by using the mechanism design theory, which improves the new performance index for a few vehicles missing the designed progression with the spillback prevention. Finally, simulation-based evaluation software is developed to conduct extensive numerical experiments for verifying the efficiency and reliability of the proposed models and algorithms..Research results are expected to contribute to the enhancement of travel efficiency improvement, energy conservation and environment protection, and the supplement of management and control theories for urban public transportation.
信号优先控制是提升公交系统运输效能与服务品质的有效手段。以往研究多集中于延误最小或速度最快等单一目标优化,且缺乏长距离干道多路径优先协调和复杂路口溢流防控设计机制。.本研究面向大运量公交走廊,首先从小汽车和公交车高频轨迹还原入手,建立集延误、排放和能耗于一体的考虑生态环境的新综合指标。其次,基于车辆时空运动状态预测,研究离线条件下面向多股大流量长距离非直线路径自动分割与优先协调同步建模方法,实现大部分车辆连续通行时综合指标的最优控制。然后,运用机制设计理论,研究在线条件下瓶颈路口主动优先、优先抑制与车速引导的多策略协同机制和方案实时生成技术,在无溢流前提下实现错过协调的少部分公交车快速通行时综合指标的最优控制。最后,研制走廊协同控制仿真评价系统原型,结合实际案例验证模型与算法的有效性和可靠性。.研究成果既能提升城市公交出行效率、实现节能环保,又能丰富和完善公共交通系统管理与控制理论体系。
以往信号优先控制研究多集中于延误最小或速度最快等单一目标或简单加权优化,更缺乏带有多参数优化的干道优先协调和局部复杂路口溢流防控。为解决此类问题,本研究首先分析了车辆路口处轨迹与交通流量、驾驶行为、信号配时参数之间耦合特性,基于改进的跟驰模型建立了车辆在交叉口的动力学微观模型,精确提取了车辆轨迹和秒级瞬时工况,提出了考虑车辆类型(公交和小汽车)、燃油类型(燃油车和电动车)的生态成本及计算方法。然后,结合真实采集的交通流量和路段行驶速度数据集,建立了流量和速度的短时组合预测模型,提出了考虑生态成本的路口生态信号控制新方法,基于此设计了带有相位相序优化功能的干道绿波协调控制通用方法,实现大部分车辆连续通行的控制需求。第三,针对在途车辆的实时控制需求,研究了卫星拒止环境下基于WSNs的车辆和乘客高精度定位跟踪方法,提出了瓶颈路口处集实时优先、优先抑制和公交车速引导为一体的多策略协同的控制方法,实现了车辆通行效率提升与站台溢流防控的双重目标。最后,研制了仿真驱动的原型系统,结合实际案例验证了模型与算法的有效性和可靠性。.通过三年的努力研究,本项目探索了一套面向降碳节能的城市公交走廊生态控制新框架,重点研究了车辆运动过程预测及定位跟踪、生态成本计算、信号优化建模与求解、公交信号优先、溢流防控策略等一系列内容,引导了信号控制朝节能减排方向发展,丰富和完善了城市交通信号控制理论。已发表高水平学术论文9篇,申请专利3项(其中,授权发明专利和实用新型专利各1项),获得计算机软件著作权登记1项。成果示范应用表明:借助互联网众包数据,采用干道信号优化技术进行信号周期、相位相序、绿信比、协调相位差和推荐车速等多参数的综合优化,可降低停车次数约25%-59%,平均行程时间约19%-30%,对应降低了车辆排放和能耗,局部路口叠加渠化改善后交通事故率降低高达30%,显著提升了道路车流的整体运行效果。