Collaborative Research: Accelerating the Pace of Discovery in Numerical Relativity by Improving Computational Efficiency and Scalability
协作研究:通过提高计算效率和可扩展性来加快数值相对论的发现步伐
基本信息
- 批准号:2207616
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The dawn of gravitational wave astronomy is just beginning, and the LIGO and Virgo gravitational wave detectors have already made some stunning discoveries. Future upgrades to these detectors, as well as the advent of new detectors, such as Kagra, will significantly expand the range of gravitational wave science. As the sensitivity of gravitational wave detectors improves over the next decade, the accuracy of numerical solutions of these events must correspondingly increase by at least an order of magnitude in the same time frame. This is a significant computational challenge that must be met to enable the full scientific potential of the new detectors. This project will study mergers of binary neutron stars and black holes using computer simulations created by Dendro-GR, a new computer code that runs very efficiently on the largest supercomputers. Tests of general relativity will also be performed by examining alternative models of gravity. New algorithms for solving differential equations will be explored to improve the efficiency of long simulations of binary mergers. Work done for this project will promote the progress of science and contribute to undergraduate and graduate training in multiple STEM fields including computer science, mathematics, and physics. Finally, Dendro-GR is an open source project.This project will study the dynamics of merging binary compact objects at the frontier of current computational capabilities. The ability to model a wide variety of possible mergers will correspondingly increase the ability of gravitational wave scientists to find and understand these high-energy events, and to search for possible new physics that lies beyond our current gravitational models. This project will be directed at the following goals: (1) The Dendro-GR computational framework will be expanded to calculate gravitational waveforms for binary neutron star inspirals of sufficient accuracy to be used in waveform catalogs. (2) Binary black hole inspirals with large mass ratios will be studied to expand the range of current waveform catalogs. (3) Gravitational waveforms for merging black hole binaries will be calculated within alternative gravitational theories to probe possible deviations from the predictions of general relativity and to search for new physics beyond our current model for gravity. (4) The computational challenge of improving accuracy in numerical relativity will be studied by focusing on reducing the time-to-solution. This complicated problem requires a broad approach that uses GPUs, innovative finite differencing, improved spatial discretizations, and exposing the temporal discretization to more parallelism.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
引力波天文学的曙光才刚刚开始,Ligo和处女座重力波探测器已经成为一些令人惊叹的发现。这些探测器的未来升级以及新探测器(例如Kagra)的出现将大大扩大引力波科学的范围。随着重力波检测器在未来十年的提高,这些事件的数值解的准确性必须相应地在同一时间范围内至少增加一个数量级。这是一项重大的计算挑战,必须满足新检测器的全部科学潜力。该项目将使用由Dendro-gr创建的计算机模拟来研究二进制中子星和黑洞的合并,这是一种新的计算机代码,在最大的超级计算机上非常有效地运行。一般相对性的测试也将通过检查重力的替代模型来进行。将探索用于求解微分方程的新算法,以提高二进制合并的长期模拟效率。为该项目完成的工作将促进科学的进步,并为包括计算机科学,数学和物理学在内的多个STEM领域的本科和研究生培训做出贡献。最后,Dendro-gr是一个开源项目。此项目将研究合并当前计算能力边界的二进制紧凑对象的动态。建模各种可能的合并的能力将相应地提高引力波科学家发现和理解这些高能量事件的能力,并寻找超出我们当前重力模型的可能的新物理学。该项目将针对以下目标:(1)将扩展Dendro-GR计算框架,以计算具有足够精确度的二进制中子星灵的重力波形,以用于波形目录。 (2)将研究具有较高质量比的二进制黑洞灵感,以扩大当前波形目录的范围。 (3)将在替代重力理论中计算合并黑洞二进制的重力波形,以探测可能与一般相对性预测的偏差,并在我们当前的重力模型之外寻找新物理学。 (4)通过关注减少时间到解决的时间来研究提高数值相对性准确性的计算挑战。这个复杂的问题需要一种广泛的方法,该方法使用GPU,创新的有限差异,改进的空间离散化以及将时间离散化暴露于更平行性的情况下。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估来通过评估来获得支持的审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hari Sundar其他文献
TANGO: A GPU optimized traceback approach for sequence alignment algorithms
TANGO:用于序列比对算法的 GPU 优化回溯方法
- DOI:
10.1145/3624062.3625128 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
LeAnn Lindsey;Muhammad Haseeb;Hari Sundar;M. Awan - 通讯作者:
M. Awan
Hari Sundar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hari Sundar', 18)}}的其他基金
Collaborative Research: Engineering Fractional Photon Transfer for Random Laser Devices
合作研究:随机激光器件的工程分数光子传输
- 批准号:
2110215 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: A framework for solution of coupled partial differential equations on heterogeneous parallel systems
合作研究:CDS
- 批准号:
2004236 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
- 批准号:
2008772 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Massively Parallel Simulations of Compact Objects
协作研究:紧凑物体的大规模并行模拟
- 批准号:
1912930 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: Strategies for Managing Data in Uncertainty Quantification at Extreme Scales
CDS
- 批准号:
1808652 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CRII: CI: Scalable Multigrid Algorithms for Solving Elliptic PDEs on Power-Efficient Clusters
CRII:CI:用于求解节能集群上椭圆偏微分方程的可扩展多重网格算法
- 批准号:
1464244 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
面向高性能计算的指令级自适应睿频加速芯片关键技术研究
- 批准号:62374100
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
- 批准号:52308532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ZephIR实测风况的动态风载加速叶片疲劳损伤的作用机理研究
- 批准号:52366017
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
激光增材制造粒子加速器真空系统复杂部件材料真空性能优化研究
- 批准号:12375321
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
- 批准号:
2247893 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Collaborative Research: Frameworks: A community platform for accelerating observationally-constrained regional oceanographic modeling
合作研究:框架:加速观测受限区域海洋学建模的社区平台
- 批准号:
2311383 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Accelerating Genomic Data Sharing and Collaborative Research with Privacy Protection
通过隐私保护加速基因组数据共享和协作研究
- 批准号:
10735407 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
- 批准号:
2247891 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
- 批准号:
2247892 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant