Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware

协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件

基本信息

  • 批准号:
    2247891
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Machine learning (ML) as a service is being overwhelmingly driven by the ever-increasing clients' intelligent data processing needs through the use of cloud servers, where powerful ML models are hosted. Although pervasive, out-sourced ML processing poses real threats to personal or business providers' data privacy. For example, the clients either need to share their sensitive data, such as healthcare records, financial information, with the server, or the server has to disclose the model to the clients. To guarantee privacy, the rise of cryptographic protocols, such as Homomorphic Encryption (HE), Multi-Party Computation (MPC), enable ML analytics directly on the encrypted data. While enticing, there still exists a big gap between the theory and practice, e.g., long latency due to the prohibitively expensive computation or communication overhead over ciphertext. This project aims to practically accelerate the private ML service by offering a full-fledged development of efficient, scalable and encryption-conscious computing paradigms. The project's novelties lie in new ML-specific cryptographic operators, accuracy-preserving and crypto-friendly neural architectures, and pioneered algorithm-hardware co-design methodologies. The project's broader significance and importance are: (1) to advance trustworthy artificial intelligence (AI), one of the national strategic pillars of the National AI Initiative; (2) to deepen the understanding of interactions among cryptography, machine learning and hardware acceleration; (3) to enrich the computer engineering curriculum, and the training of students from diverse backgrounds through relevant programs at Lehigh University, Northeastern University, and the University of Connecticut.The project will develop a multifaceted design paradigm for efficient, scalable and practical algorithm-hardware co-optimized solutions to significantly accelerate privacy-preserving machine learning on hardware platforms such as FPGA. This project consists of three intervening research thrusts: (1) to orchestrate information representation and model sparsity in the encryption domain to fundamentally decrease the memory and computation footprint in the HE inference; (2) to overcome the ultra-high overhead associated with the MPC-based solution through techniques such as encryption-aware model truncation and partial hardware reconfiguration; (3) to search for crypto-friendly and accuracy-preserving neural architectures via jointly optimizing non-linear operation reduction, and closed loop "algorithm-hardware" design space exploration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
客户通过使用云服务器(托管强大的 ML 模型)不断增长的智能数据处理需求,极大地推动了机器学习 (ML) 作为一项服务。尽管普遍存在,外包机器学习处理对个人或企业提供商的数据隐私构成了真正的威胁。例如,客户端要么需要与服务器共享他们的敏感数据,例如医疗记录、财务信息,要么服务器必须向客户端公开模型。为了保证隐私,同态加密 (HE)、多方计算 (MPC) 等加密协议的兴起使得机器学习能够直接对加密数据进行分析。虽然很诱人,但理论和实践之间仍然存在很大差距,例如,由于密文上极其昂贵的计算或通信开销而导致长延迟。该项目旨在通过提供高效、可扩展和加密意识计算范例的全面开发来切实加速私有机器学习服务。该项目的新颖之处在于新的 ML 特定加密运算符、保留准确性和加密友好的神经架构,以及开创性的算法-硬件协同设计方法。该项目的更广泛意义和重要性是:(1)推进可信人工智能(AI),这是国家人工智能计划的国家战略支柱之一; (2)加深对密码学、机器学习和硬件加速之间相互作用的理解; (3)丰富计算机工程课程,通过里哈伊大学、东北大学和康涅狄格大学的相关项目培养来自不同背景的学生。该项目将为高效、可扩展和实用的算法开发多方面的设计范式——硬件协同优化解决方案可显着加速 FPGA 等硬件平台上的隐私保护机器学习。该项目由三个干预研究重点组成:(1)协调加密域中的信息表示和模型稀疏性,从根本上减少 HE 推理中的内存和计算占用; (2) 通过加密感知模型截断和部分硬件重新配置等技术,克服基于 MPC 的解决方案带来的超高开销; (3)通过联合优化非线性运算缩减和闭环“算法-硬件”设计空间探索,寻找加密友好且保持准确性的神经架构。该奖项反映了 NSF 的法定使命,并被认为值得支持使用基金会的智力价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wujie Wen其他文献

EFENDING DNN A DVERSARIAL A TTACKS WITH P RUNING AND L OGITS A UGMENTATION
通过剪枝和逻辑增强来防御 DNN 对抗攻击
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shaokai Ye;Siyue Wang;Xiao Wang;Bo Yuan;Wujie Wen;X. Lin
  • 通讯作者:
    X. Lin
AdaPI: Facilitating DNN Model Adaptivity for Efficient Private Inference in Edge Computing
AdaPI:促进 DNN 模型适应性,以实现边缘计算中的高效私有推理
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tong Zhou;Jiahui Zhao;Yukui Luo;Xi Xie;Wujie Wen;Caiwen Ding;Xiaolin Xu
  • 通讯作者:
    Xiaolin Xu
Deep-evasion: Turn deep neural network into evasive self-contained cyber-physical malware: poster
深度规避:将深度神经网络变成规避的独立网络物理恶意软件:海报
FlexLevel NAND Flash Storage System Design to Reduce LDPC Latency
FlexLevel NAND 闪存存储系统设计可减少 LDPC 延迟
Error Characterization and Correction Techniques for Reliable STT-RAM Designs
  • DOI:
  • 发表时间:
    2015-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wujie Wen
  • 通讯作者:
    Wujie Wen

Wujie Wen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wujie Wen', 18)}}的其他基金

CAREER: Dependable and Secure Machine Learning Acceleration from Untrusted Hardware
职业:来自不受信任的硬件的可靠且安全的机器学习加速
  • 批准号:
    2238873
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    2401544
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Dependable and Secure Machine Learning Acceleration from Untrusted Hardware
职业:来自不受信任的硬件的可靠且安全的机器学习加速
  • 批准号:
    2349538
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
  • 批准号:
    2348733
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
EAGER: Invisible Shield: Can Compression Harden Deep Neural Networks Universally Against Adversarial Attacks?
EAGER:隐形盾牌:压缩能否使深层神经网络普遍抵御对抗性攻击?
  • 批准号:
    2011260
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Retraining-free Concurrent Test and Diagnosis in Emerging Neural Network Accelerators
SHF:小型:协作研究:新兴神经网络加速器中的免再训练并发测试和诊断
  • 批准号:
    2011236
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    1919182
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    2006748
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Retraining-free Concurrent Test and Diagnosis in Emerging Neural Network Accelerators
SHF:小型:协作研究:新兴神经网络加速器中的免再训练并发测试和诊断
  • 批准号:
    1910022
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
EAGER: Invisible Shield: Can Compression Harden Deep Neural Networks Universally Against Adversarial Attacks?
EAGER:隐形盾牌:压缩能否使深层神经网络普遍抵御对抗性攻击?
  • 批准号:
    1840813
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了