CAREER: Dependable and Secure Machine Learning Acceleration from Untrusted Hardware

职业:来自不受信任的硬件的可靠且安全的机器学习加速

基本信息

  • 批准号:
    2238873
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

Fueled by the advancements of machine learning (ML) models and computing hardware, intelligence is becoming a household brand from cloud to edge, transforming every walk of life. For intelligent systems with safety and security as their primary requirements, such as autonomous vehicles and doctorless clinics, ensuring inference dependability is essential. Unfortunately, current hardware cannot provide such a promise. The inference execution can be disturbed by either passive faults or active physical fault attacks on hardware components like memory, logic. While there have been relevant studies from the perspective of data, the problem in the context of hardware is different and far less explored. This CAREER project aims to create a new paradigm of safeguarding ML execution against both passive hardware faults and active fault attacks, with a focus on proactively rooting inference dependability into ML processing by design. Unlike prior reactive hardware bug repair or hardware security-based solutions, which do not closely embrace ML's distinct properties, the project's novelties lie in the new capability development inside ML processing, namely "Multi-Purposed Neuron", and the cross-layer exploration of ML algorithm, hardware architecture and hardware security centered around this. The project's broader significance and importance are: 1) yield practical solutions for ensuring the root of trust of accelerated artificial intelligence (AI) services in security, healthcare, automated systems, and other domains; 2) advance the state-of-the-art on the interactions among AI algorithm, hardware, and security design; 3) provide abundant educational opportunities and outreach activities to nurture and attract students from underrepresented groups and the K-12 community. The project seeks to develop "Multi-Purposed Neuron"-centered ML inference protection methodologies for hardware accelerators through algorithm-hardware-security co-design, with guarantees of generality, scalability, feasibility, and durability. The project consists of three thrusts: 1) Improve fault tolerance offline through "Coded Neurons" and hardware optimization without assuming a fixed attack available prior (Generality); 2) Mitigate multiple faults online via "Guarded Neurons", dedicated training methods and hardware design (Scalability); 3) Defend against strong and adaptive attacks by real time proactive solutions built upon "Honey Neurons" and Trust Execution Environment (Durability). The impact on inference accuracy, latency and hardware overhead will be minimized across all thrusts (Feasibility).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在机器学习 (ML) 模型和计算硬件进步的推动下,智能正在成为从云到边缘的家喻户晓的品牌,改变着各行各业。对于自动驾驶汽车、无医生诊所等以安全保障为首要要求的智能系统来说,确保推理的可靠性至关重要。不幸的是,当前的硬件无法提供这样的承诺。推理执行可能会受到对内存、逻辑等硬件组件的被动故障或主动物理故障攻击的干扰。虽然已经从数据的角度进行了相关研究,但硬件背景下的问题却有所不同,而且探讨得还少。该 CAREER 项目旨在创建一种新的范例,保护 ML 执行免受被动硬件故障和主动故障攻击,重点是通过设计主动将推理可靠性植根于 ML 处理中。与之前的反应式硬件错误修复或基于硬件安全的解决方案不同,这些解决方案并未紧密拥抱机器学习的独特属性,该项目的新颖之处在于机器学习处理内部的新功能开发,即“多用途神经元”,以及跨层探索ML算法、硬件架构和硬件安全都是围绕这个展开的。该项目更广泛的意义和重要性在于:1)提供实用的解决方案,确保加速人工智能(AI)服务在安全、医疗保健、自动化系统和其他领域的信任根; 2)推进人工智能算法、硬件和安全设计之间交互的最先进水平; 3) 提供丰富的教育机会和外展活动,以培养和吸引弱势群体和 K-12 社区的学生。该项目旨在通过算法-硬件-安全协同设计,开发以“多用途神经元”为中心的硬件加速器机器学习推理保护方法,并保证通用性、可扩展性、可行性和耐用性。该项目由三个主旨组成:1)通过“编码神经元”和硬件优化来提高离线容错能力,而不假设先有固定攻击可用(通用性); 2)通过“Guarded Neurons”、专门的训练方法和硬件设计(可扩展性)在线缓解多种故障; 3) 通过基于“蜂蜜神经元”和信任执行环境(持久性)的实时主动解决方案防御强大的自适应攻击。所有主旨(可行性)对推理准确性、延迟和硬件开销的影响都将降至最低。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wujie Wen其他文献

EFENDING DNN A DVERSARIAL A TTACKS WITH P RUNING AND L OGITS A UGMENTATION
通过剪枝和逻辑增强来防御 DNN 对抗攻击
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shaokai Ye;Siyue Wang;Xiao Wang;Bo Yuan;Wujie Wen;X. Lin
  • 通讯作者:
    X. Lin
AdaPI: Facilitating DNN Model Adaptivity for Efficient Private Inference in Edge Computing
AdaPI:促进 DNN 模型适应性,以实现边缘计算中的高效私有推理
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tong Zhou;Jiahui Zhao;Yukui Luo;Xi Xie;Wujie Wen;Caiwen Ding;Xiaolin Xu
  • 通讯作者:
    Xiaolin Xu
FlexLevel NAND Flash Storage System Design to Reduce LDPC Latency
FlexLevel NAND 闪存存储系统设计可减少 LDPC 延迟
Deep-evasion: Turn deep neural network into evasive self-contained cyber-physical malware: poster
深度规避:将深度神经网络变成规避的独立网络物理恶意软件:海报
Error Characterization and Correction Techniques for Reliable STT-RAM Designs
  • DOI:
  • 发表时间:
    2015-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wujie Wen
  • 通讯作者:
    Wujie Wen

Wujie Wen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wujie Wen', 18)}}的其他基金

SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    2401544
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
  • 批准号:
    2247891
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CAREER: Dependable and Secure Machine Learning Acceleration from Untrusted Hardware
职业:来自不受信任的硬件的可靠且安全的机器学习加速
  • 批准号:
    2349538
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
  • 批准号:
    2348733
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
EAGER: Invisible Shield: Can Compression Harden Deep Neural Networks Universally Against Adversarial Attacks?
EAGER:隐形盾牌:压缩能否使深层神经网络普遍抵御对抗性攻击?
  • 批准号:
    2011260
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Retraining-free Concurrent Test and Diagnosis in Emerging Neural Network Accelerators
SHF:小型:协作研究:新兴神经网络加速器中的免再训练并发测试和诊断
  • 批准号:
    2011236
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    1919182
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Retraining-free Concurrent Test and Diagnosis in Emerging Neural Network Accelerators
SHF:小型:协作研究:新兴神经网络加速器中的免再训练并发测试和诊断
  • 批准号:
    1910022
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    2006748
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
EAGER: Invisible Shield: Can Compression Harden Deep Neural Networks Universally Against Adversarial Attacks?
EAGER:隐形盾牌:压缩能否使深层神经网络普遍抵御对抗性攻击?
  • 批准号:
    1840813
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

面向安全性和可靠性的智能汽车定位系统故障测试理论及评价方法研究
  • 批准号:
    52372426
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
面向无人机空地无线网络中组合式攻击下的高可靠安全通信技术研究
  • 批准号:
    62371408
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
面向精准医疗的磁控微机器人可靠驱动与主动安全控制研究
  • 批准号:
    62373168
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于区块链的医疗信息去中心化安全可靠的联邦学习技术的研究
  • 批准号:
    62372092
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于自适应代理模型的山区大跨桥梁风致列车运行安全可靠性高效评估
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Dependable and Secure Machine Learning Acceleration from Untrusted Hardware
职业:来自不受信任的硬件的可靠且安全的机器学习加速
  • 批准号:
    2349538
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Stochastic Control-Theoretic Approach to Development of Simultaneously Cyber-Secure and Energy-Efficient Randomized Transmission Methods for Dependable IoT
用于开发同时网络安全和节能的可靠物联网随机传输方法的随机控制理论方法
  • 批准号:
    20K14771
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CRII: CPS: Design of Secure and Dependable Next Generation Automotive Cyber-Physical Systems
CRII:CPS:安全可靠的下一代汽车网络物理系统的设计
  • 批准号:
    1743490
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CRII: CPS: Design of Secure and Dependable Next Generation Automotive Cyber-Physical Systems
CRII:CPS:安全可靠的下一代汽车网络物理系统的设计
  • 批准号:
    1564801
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Efficient design and implementations of dependable and secure cryptosystems
可靠且安全的密码系统的高效设计和实现
  • 批准号:
    312485-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 60万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了