OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
基本信息
- 批准号:2008772
- 负责人:
- 金额:$ 49.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Solving large-scale partial differential equations (PDE) is common in science and engineering, from studying gravitational waves to designing aerodynamic cars. Given the scale of these problems, solving such PDEs requires supercomputing resources. The latest supercomputing architectures are different from the previous generation of leadership class architectures and and are characterized by high levels of diversity within and across machines. Such diversity and heterogeneity makes it extremely difficult to effectively distribute work, i.e., partition the data or tasks, across disparate computing resources. Since the primary objective of building leadership class machines is to further scientific discovery and national prosperity, it is essential that applications, old and new, are able to scale and utilize these machines to their full potential. This project develops novel data and task partitioning algorithms that factor in the architectural characteristics of modern supercomputers to enable efficient and scalable utilization of current and future computing architectures.Existing data and task partitioning schemes do not explicitly consider the underlying architectural topology while partitioning or is done indirectly during the design of the algorithm and codes. Ignoring topology leads to loss of scalability and performance, while shifting the burden to algorithm/code design increases the development costs and complexity, and decreases portability. While data and task partitioning for parallelization, along with mapping the partitions to processes, have been studied for a long time, they have not been considered as a combined problem. To a large extent this was due to the simple structures and symmetry that existed in cluster computing architectures. Inefficiencies that did not significantly impact performance and scalability ten years ago are starting to inhibit scalability and thereby scientific discovery. This project is a first step in ensuring that scientific discovery is not hampered as a result of the difficulty in porting codes to new architectures. This project develops new graph and space-filling-curve-based partitioning algorithms that are aware of the architectural topology and are able to automatically generate data/task partitions and mappings to address problems with current schemes. The algorithms and software developed as part of this proposal will have wide-ranging impact, by improving the performance and scalability of legacy applications and reducing the development cost and improving the portability of new applications, to run efficiently on systems ranging from simple shared memory architectures to the largest heterogeneous clusters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从研究引力波到设计空气动力汽车,求解大规模偏微分方程 (PDE) 在科学和工程中很常见。考虑到这些问题的规模,解决此类偏微分方程需要超级计算资源。最新的超级计算架构与上一代领先级架构不同,其特点是机器内部和机器之间的高度多样性。这种多样性和异构性使得在不同的计算资源之间有效地分配工作(即划分数据或任务)变得极其困难。由于构建领导级机器的主要目标是促进科学发现和国家繁荣,因此无论新旧应用程序都能够扩展并充分利用这些机器的潜力,这一点至关重要。该项目开发了新颖的数据和任务分区算法,该算法考虑了现代超级计算机的架构特征,以实现当前和未来计算架构的高效且可扩展的利用。现有的数据和任务分区方案在分区或完成时没有明确考虑底层架构拓扑在算法和代码的设计过程中间接地。忽略拓扑会导致可扩展性和性能的损失,而将负担转移到算法/代码设计上会增加开发成本和复杂性,并降低可移植性。 虽然并行化的数据和任务分区以及将分区映射到进程已经研究了很长时间,但它们并没有被视为一个组合问题。这在很大程度上是由于集群计算架构中存在的简单结构和对称性。十年前,效率低下并未对性能和可扩展性产生重大影响,但现在却开始抑制可扩展性,从而抑制科学发现。该项目是确保科学发现不会因将代码移植到新架构的困难而受到阻碍的第一步。该项目开发了新的基于图形和空间填充曲线的分区算法,这些算法了解架构拓扑,并能够自动生成数据/任务分区和映射,以解决当前方案的问题。作为该提案的一部分开发的算法和软件将产生广泛的影响,通过提高遗留应用程序的性能和可扩展性,降低开发成本并提高新应用程序的可移植性,在从简单的共享内存架构等系统上高效运行该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-discretization domain specific language and code generation for differential equations
微分方程的多离散化域特定语言和代码生成
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:3.3
- 作者:Heisler, Eric;Deshmukh, Aadesh;Mazumder, Sandip;Sadayappan, Ponnuswamy;Sundar, Hari
- 通讯作者:Sundar, Hari
Scalable Adaptive PDE Solvers in Arbitrary Domains
- DOI:10.1145/3458817.3476220
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:K. Saurabh;Masado Ishii;Milinda Fernando;Boshun Gao;Kendrick Tan;M. Hsu;A. Krishnamurthy;H. Sundar;B. Ganapathysubramanian
- 通讯作者:K. Saurabh;Masado Ishii;Milinda Fernando;Boshun Gao;Kendrick Tan;M. Hsu;A. Krishnamurthy;H. Sundar;B. Ganapathysubramanian
A Domain Specific Language Applied to Phonon Boltzmann Transport for Heat Conduction
应用于热传导声子玻尔兹曼输运的领域特定语言
- DOI:10.1115/imece2022-95034
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Heisler, Eric;Saurav, Siddharth;Deshmukh, Aadesh;Mazumder, Sandip;Sadayappan, Ponnuswamy;Sundar, Hari
- 通讯作者:Sundar, Hari
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hari Sundar其他文献
TANGO: A GPU optimized traceback approach for sequence alignment algorithms
TANGO:用于序列比对算法的 GPU 优化回溯方法
- DOI:
10.1145/3624062.3625128 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
LeAnn Lindsey;Muhammad Haseeb;Hari Sundar;M. Awan - 通讯作者:
M. Awan
Hari Sundar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hari Sundar', 18)}}的其他基金
Collaborative Research: Accelerating the Pace of Discovery in Numerical Relativity by Improving Computational Efficiency and Scalability
协作研究:通过提高计算效率和可扩展性来加快数值相对论的发现步伐
- 批准号:
2207616 - 财政年份:2022
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
Collaborative Research: Engineering Fractional Photon Transfer for Random Laser Devices
合作研究:随机激光器件的工程分数光子传输
- 批准号:
2110215 - 财政年份:2021
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: A framework for solution of coupled partial differential equations on heterogeneous parallel systems
合作研究:CDS
- 批准号:
2004236 - 财政年份:2020
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
Collaborative Research: Massively Parallel Simulations of Compact Objects
协作研究:紧凑物体的大规模并行模拟
- 批准号:
1912930 - 财政年份:2019
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: Strategies for Managing Data in Uncertainty Quantification at Extreme Scales
CDS
- 批准号:
1808652 - 财政年份:2018
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
CRII: CI: Scalable Multigrid Algorithms for Solving Elliptic PDEs on Power-Efficient Clusters
CRII:CI:用于求解节能集群上椭圆偏微分方程的可扩展多重网格算法
- 批准号:
1464244 - 财政年份:2015
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
相似国自然基金
核受体RORgamma调控肿瘤微生态促进非小细胞肺癌恶性进展的作用机制研究
- 批准号:82373186
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
- 批准号:82370387
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
- 批准号:82303969
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
前丘脑室旁核小胶质细胞经由TNF-α参与强迫进食行为的作用及机制研究
- 批准号:82301521
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
- 批准号:82304474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
- 批准号:
2412329 - 财政年份:2023
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
- 批准号:
2333899 - 财政年份:2023
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
- 批准号:
2007775 - 财政年份:2020
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
Collaborative Research: CNS core: OAC core: Small: New Techniques for I/O Behavior Modeling and Persistent Storage Device Configuration
合作研究: CNS 核心:OAC 核心:小型:I/O 行为建模和持久存储设备配置新技术
- 批准号:
2008324 - 财政年份:2020
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
- 批准号:
2007789 - 财政年份:2020
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant