Collaborative Research: Magnetically-Controlled Modules with Reconfigurable Self-Assembly and Disassembly

合作研究:具有可重构自组装和拆卸功能的磁控模块

基本信息

  • 批准号:
    2130775
  • 负责人:
  • 金额:
    $ 32.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Small scale manufacturing in real-time faces unique challenges. Components must be assembled inside or in close proximity to existing structures, such as inside the vasculature of an animal, inside a microfluidic system, or around soldered semiconductor components. This project will develop a new small-scale manufacturing method with the precision of modules, the reusability of Legos, and the self-assembly of DNA – but one that is controllable by an external magnetic field. Existing reconfigurable modular systems either use complex intelligent subunits, or are slow, usually only actuating a small number of modules at a time. There is an urgent need for robust, controllable, and efficient methods to overcome the existing issues regarding modular robotics and controllable self-reconfiguration. This award will design an innovative reconfigurable modular robotic system that uses actuatable subcomponents that can be actively assembled or disassembled on command. The modular subunits contain permanent magnets and are actuated using external magnetic fields generated by an electromagnetic system. The subunits can be moved in different motion modes that evolve dynamically as subunits assemble into complex modular structures. The issues addressed by this project are at the interface of small-scale robotics, control theory, design & manufacturing, and materials science, and hold exciting prospects for fundamental research with the potential for diverse applications. The project will provide tools and guidelines that will help advance current and future modular robotic systems. If successful, these robots can be used to perform targeted drug delivery, improve several healthcare procedures that utilize stents, and broaden microscale manufacturing prospects to produce more complex and dynamic systems. This research program integrates theoretical and experimental work with the following objectives: (1: Control) Fabricate scalable and magnetically controllable modular subunits through high resolution 3D printing techniques and embed bipolar permanent magnets to enable programmable spatial variation of magnetic properties to create heterogeneous behavior among subunits under a single global control input; design control techniques for steering components and assemblies; controllers for disassembly, (2: Applications) Manipulate modular subunits to assemble plugs, encapsulate objects, approximate shapes, and build scaffolds. (3: Multiplex) Advance algorithms for building factories that greatly speed up the assembly rate of modules into desired shapes and configurations. (4: Hardware) Fabricate an operational small-scale manipulation prototypical system that will integrate the other objectives' results and demonstrate a 3D small-scale fabrication system. This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
小规模的实时制造面临着独特的挑战。组件必须在现有结构内部或附近组装,例如动物的脉管系统内部、微流体系统内部或焊接的半导体组件周围。一种具有模块精度、乐高积木可重复使用性和 DNA 自组装性的小规模制造方法,但现有的可重构模块化系统要么使用复杂的智能系统,要么通过外部磁场进行控制。子单元,或者速度缓慢,通常一次只能驱动少量模块,迫切需要鲁棒、可控和高效的方法来克服模块化机器人和可控自重构的现有问题。创新的可重构模块化机器人系统,使用可根据命令主动组装或拆卸的可驱动子组件。模块化子单元包含永磁体,并使用电磁系统产生的外部磁场进行驱动。子单元可以以不同的运动模式移动,当子单元组装成复杂的模块化结构时,这些模式会动态演化。该项目解决的问题涉及小型机器人、控制理论、设计与制造以及材料科学,并且令人兴奋。该项目将提供有助于推进当前和未来模块化机器人系统的工具和指南,如果成功的话,这些机器人可用于执行靶向药物输送,改进多种使用支架的医疗程序。 ,并拓宽微型制造前景以生产该研究计划将理论和实验工作与以下目标相结合:(1:控制)通过高分辨率 3D 打印技术制造可扩展且磁力可控的模块化子单元,并嵌入双极永磁体以实现磁特性的可编程空间变化。在单个全局控制输入下创建子单元之间的异构行为;设计用于拆卸的转向组件和组件控制器的控制技术,(2:应用)操纵模块化(3:多重)用于构建工厂的先进算法,可大大加快将模块组装成所需形状和配置的速度。(4:硬件)制造一个可操作的小规模操纵原型系统,该系统将集成其他目标的结果并演示。 3D 小型制造系统该项目得到了机器人学跨部门基础研究项目的支持,该项目由各部门共同管理和资助。工程 (ENG) 和计算机与信息科学与工程 (CISE)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Closed-Loop Control of Magnetic Modular Cubes for 2D Self-Assembly
用于二维自组装的磁性模块化立方体的闭环控制
  • DOI:
    10.1109/lra.2023.3296008
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Lu, Yitong;Bhattacharjee, Anuruddha;Taylor, Conlan C.;Leclerc, Julien;O'Kane, Jason M.;Kim, MinJun;Becker, Aaron T.
  • 通讯作者:
    Becker, Aaron T.
Magnetically Controlled Modular Cubes With Reconfigurable Self-Assembly and Disassembly
具有可重构自组装和拆卸功能的磁控模块化立方体
  • DOI:
    10.1109/tro.2021.3114607
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Bhattacharjee, Anuruddha;Lu, Yitong;Becker, Aaron T.;Kim, MinJun
  • 通讯作者:
    Kim, MinJun
Rolling Motion of a Soft Microsnowman under Rotating Magnetic Field
旋转磁场下软体微雪人的滚动运动
  • DOI:
    10.3390/mi13071005
  • 发表时间:
    2022-06-26
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Kararsiz, Gokhan;Duygu, Yasin Cagatay;Rogowski, Louis William;Bhattacharjee, Anuruddha;Kim, Min Jun
  • 通讯作者:
    Kim, Min Jun
Navigation and Control of Motion Modes with Soft Microrobots at Low Reynolds Numbers
低雷诺数下软微型机器人运动模式的导航和控制
  • DOI:
    10.3390/mi14061209
  • 发表时间:
    2023-06-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    G. Kararsiz;Yasin Cagatay Duygu;Zhengguang Wang;L. Rogowski;Sung Jea Park;Min Jun Kim
  • 通讯作者:
    Min Jun Kim
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MinJun Kim其他文献

Plasmonic nanopore sensing with continuous AC modulation
具有连续交流调制的等离激元纳米孔传感

MinJun Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MinJun Kim', 18)}}的其他基金

Collaborative Research: Ultrasensitive Nucleic Acid Sensing Tools Based on Cas Assays and Solid-State Nanopores
合作研究:基于Cas检测和固态纳米孔的超灵敏核酸传感工具
  • 批准号:
    2041340
  • 财政年份:
    2021
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
NSF-BSF: Modeling and Control of Collective Dynamics for Externally Driven Planar Microswimmers
NSF-BSF:外部驱动平面微型游泳器集体动力学的建模和控制
  • 批准号:
    2123824
  • 财政年份:
    2021
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
Collaborative Research: A Stacked Plasmonic Nanopore for Tether-Free Stretching and Label-Free Sensing of hSTf Dynamics and Complex Formation at Ultra-Low Concentrations
合作研究:堆叠式等离子体纳米孔,用于超低浓度下 hSTf 动力学和复杂形成的无绳拉伸和无标记传感
  • 批准号:
    2022374
  • 财政年份:
    2020
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Controlled Investigation of Micro- and Nanoscale Contact Interactions Between Microbes and Biomaterials Using Artificial Bacteria
合作研究:使用人造细菌对微生物与生物材料之间的微米和纳米尺度接触相互作用进行受控研究
  • 批准号:
    1761060
  • 财政年份:
    2018
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an Integrated Bionanomaterials Characterization and Imaging System for Research and Education Initiatives in Bioengineering
MRI:获取集成生物纳米材料表征和成像系统,用于生物工程研究和教育计划
  • 批准号:
    1827831
  • 财政年份:
    2018
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantitative Analysis of Liposome Deformation at Nanoscale Using Resistive Pulse Sensing in Solid State Nanopores
合作研究:利用固态纳米孔中的电阻脉冲传感对纳米尺度脂质体变形进行定量分析
  • 批准号:
    1712069
  • 财政年份:
    2016
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
3D Motion and Swarm Control of Magnetically Propelled Microrobots for in vivo Particulate Drug Delivery
用于体内颗粒药物输送的磁力驱动微型机器人的 3D 运动和群体控制
  • 批准号:
    1712096
  • 财政年份:
    2016
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Micro-Assembly Exploiting SofT RObotics (MAESTRO)
RI:小型:协作研究:微装配开发软机器人 (MAESTRO)
  • 批准号:
    1712088
  • 财政年份:
    2016
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Continuing Grant
Integrated Nanochannel and Nanopore Architecture for Studying Translocation Dynamics of DNA
用于研究 DNA 易位动力学的集成纳米通道和纳米孔结构
  • 批准号:
    1707818
  • 财政年份:
    2016
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
3D Motion and Swarm Control of Magnetically Propelled Microrobots for in vivo Particulate Drug Delivery
用于体内颗粒药物输送的磁力驱动微型机器人的 3D 运动和群体控制
  • 批准号:
    1634726
  • 财政年份:
    2016
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant

相似国自然基金

内蒙古中部中新世生物-磁性地层学研究及古环境重建
  • 批准号:
    42374094
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
临潭盆地新近纪沉积对西秦岭地貌演化的约束:基于磁性地层与物源研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
鄂尔多斯西南缘奥陶系磁性地层年代研究
  • 批准号:
    42272034
  • 批准年份:
    2022
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
青藏高原可可西里盆地始新世-渐新世气候转型事件磁性地层学研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
祁连山西段山间盆地新生代沉积磁性地层学研究
  • 批准号:
    42074077
  • 批准年份:
    2020
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Magnetically-Controlled Modules with Reconfigurable Self-Assembly and Disassembly
合作研究:具有可重构自组装和拆卸功能的磁控模块
  • 批准号:
    2130793
  • 财政年份:
    2022
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Magnetically Actuated Black Silicon Ratchet Surfaces for Digital Microfluidics
合作研究:用于数字微流体的磁驱动黑硅棘轮表面
  • 批准号:
    1950009
  • 财政年份:
    2020
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Magnetically Actuated Black Silicon Ratchet Surfaces for Digital Microfluidics
合作研究:用于数字微流体的磁驱动黑硅棘轮表面
  • 批准号:
    1951051
  • 财政年份:
    2020
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Magnetically Assisted Self-Assembly for Facile 2D Membrane Protein Crystallization
合作研究:磁力辅助自组装轻松实现二维膜蛋白结晶
  • 批准号:
    2023833
  • 财政年份:
    2019
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Continuing Grant
WoU-MMA Collaborative research: Turbulence and Reconnection in Magnetically-Dominated Astrophysical Plasmas
WoU-MMA 合作研究:磁控天体物理等离子体中的湍流和重联
  • 批准号:
    1903412
  • 财政年份:
    2019
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了