Collaborative Research: Magnetically Actuated Black Silicon Ratchet Surfaces for Digital Microfluidics
合作研究:用于数字微流体的磁驱动黑硅棘轮表面
基本信息
- 批准号:1951051
- 负责人:
- 金额:$ 31.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Since most of the sensitive and standardized bio-analytical techniques work in the liquid medium, the lab-on-a-chip system should be able to efficiently handle liquid solutions in micro/nano scale. To date, most of these systems have been developed based on the continuous flow system which lacks device reconfigurability. Consequently, much attention has been drawn to droplet-based lab-on-a-chip systems, namely, digital micro fluidic systems based on electrowetting that manipulate discrete liquid droplets rather than continuous liquid streams. Nevertheless, the electrowetting-based approach suffers from limitations such as high voltage requirement and biofouling, hampering many real applications. This project provides a straightforward pathway to a new digital micro fluidic platform without electrowetting-related limitations. The proposed platform exploits a purely mechanical means to drive discrete liquid droplets in a rapid, flexible, programmable, and reconfigurable manner. This project will also generate information and demonstration materials that can be directly used to promote both classroom teaching and general public's interest in materials, microfluidics, interfacial science, micro/nanotechnology. The project aims to explore the dynamically tunable surface morphology and consequential interfacial wettability using a black silicon ratchet surface in order to seek a new strategy to manipulate liquid droplets for the advancement of digital microfluidics. The proposed ratchet surface involves superhydrophobic black silicon scales on elastomer micropillars such that individual signals actuate individual scales and change the entire surface morphology forming a black silicon ratchet surface that drives liquid droplets. Consequently, droplets are essentially driven mechanically, not electrically. In addition, it is expected that conical nanostructures on the black silicon surface and/or slippery liquid infused porous surfaces to be integrated will significantly reduce biofouling. The proposed approach cannot be realized without elucidating underlying principles and establishing necessary techniques. Two principal investigators’ expertise encompassing mechanics, materials, manufacturing and microfluidics will be combined in order to achieve those understanding and knowledge, and finally open up a new interdisciplinary research area across smart composite materials and digital microfluidics. During the project, three objectives will be systematically pursued to towards the project goal. First, the mechanical characteristics involved in the proposed superhydrophobic ratchet surface will examined, Second, the interaction between liquid droplets and the superhydrophobic ratchet surface will be characterized and associated forces to manipulate liquid droplets on it will be investigated. Finally, droplet manipulations including droplet transporting, merging, and splitting along with the reduced biofouling will be demonstrated.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于大多数敏感且标准化的生物分析技术都在液体介质中工作,因此芯片实验室系统应该能够有效地处理微/纳米尺度的液体溶液。迄今为止,大多数此类系统已经开发出来。基于缺乏设备可重构性的连续流系统,基于液滴的芯片实验室系统受到了很多关注,即基于电润湿的数字微流体系统,其操纵离散的液滴而不是连续的液流。尽管如此,.基于电润湿的方法受到高电压要求和生物污垢等限制,阻碍了许多实际应用,该项目提供了一种没有电润湿相关限制的新型数字微流体平台的直接途径。该项目还将生成可直接用于促进课堂教学和公众对材料、微流体、界面的兴趣的信息和演示材料。该项目旨在利用黑硅棘轮表面探索动态可调的表面形态和相应的界面润湿性,以寻求一种操纵液滴的新策略,以促进数字微流体的发展。弹性体微柱上的黑硅鳞片,使得单个信号驱动单个鳞片并改变所检查的整个表面形态,形成驱动液滴的黑硅棘轮表面。此外,预计黑硅表面和/或光滑液体注入多孔表面上的锥形纳米结构将显着减少生物污垢,除非阐明基本原理并建立。两位主要研究人员将结合力学、材料、制造和微流体学的专业知识,以实现这些理解和知识,并最终开辟一个跨越智能复合材料和数字微流体学的新的跨学科研究领域。在该项目期间,最终将实现三个目标:首先,将检查所提出的超疏水棘轮表面所涉及的机械特性;其次,将表征液滴与超疏水棘轮表面之间的相互作用以及相关力。最后,将演示液滴操纵,包括液滴传输、合并和分裂以及减少生物污垢。该奖项反映了 NSF 的法定使命,并通过评估被认为值得支持。利用基金会的智力优势和更广泛的影响审查标准。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
STRONG MICROSTREAMING FROM A PINNED OSCILLATING MEMBRANE AND APPLICATION TO GAS EXCHANGE
来自固定振荡膜的强微流及其在气体交换中的应用
- DOI:
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Anthony L. Mercader and Sung Kwon Cho
- 通讯作者:Anthony L. Mercader and Sung Kwon Cho
PDMS-Zwitterionic Hybrid for Facile, Antifouling Microfluidic Device Fabrication
PDMS-两性离子杂化物用于简便、防污微流体装置的制造
- DOI:10.1021/acs.langmuir.1c03375
- 发表时间:2022-03
- 期刊:
- 影响因子:3.9
- 作者:Mercader, Anthony;Ye, Sang;Kim, Seungil;Orizondo, Ryan A.;Cho, Sung Kwon;Wagner, William R.
- 通讯作者:Wagner, William R.
Propulsion reversal in oscillating-bubble powered micro swimmer
振荡气泡动力微型游泳器中的推进反转
- DOI:10.1088/1361-6439/ac0e7f
- 发表时间:2021-07
- 期刊:
- 影响因子:2.3
- 作者:Liu, Fang;Zhan, Ye;Cho, Sung Kwon
- 通讯作者:Cho, Sung Kwon
Dielectrowetting Control of Capillary Force (Cheerios Effect) between Floating Objects and Wall for Dielectric Fluid
介电流体浮动物体与壁之间毛细管力(Cheerios 效应)的介电润湿控制
- DOI:10.3390/mi12030341
- 发表时间:2021-03-23
- 期刊:
- 影响因子:3.4
- 作者:Yuan J;Feng J;Cho SK
- 通讯作者:Cho SK
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sung Cho其他文献
Coherence in metal-metal-to-ligand-charge-transfer excited states of a dimetallic complex investigated by ultrafast transient absorption anisotropy.
通过超快瞬态吸收各向异性研究双金属络合物金属-金属-配体电荷转移激发态的相干性。
- DOI:
10.1021/jp109174f - 发表时间:
2011-03-01 - 期刊:
- 影响因子:0
- 作者:
Sung Cho;Michael W. Mara;Xianghuai Wang;Jenny V. Lockard;A. Rachford;F. Castellano;Lin X. Chen - 通讯作者:
Lin X. Chen
Through-Space Ultrafast Photoinduced Electron Transfer Dynamics of a C70-Encapsulated Bisporphyrin Covalent Organic Polyhedron in a Low-Dielectric Medium.
低介电介质中 C70 封装的双卟啉共价有机多面体的穿越空间超快光致电子转移动力学。
- DOI:
10.1021/jacs.7b00220 - 发表时间:
2017-03-20 - 期刊:
- 影响因子:15
- 作者:
Michael Ortiz;Sung Cho;J. Niklas;Seonah Kim;O. Poluektov;Wei Zhang;G. Rumbles;Jaehong Park - 通讯作者:
Jaehong Park
Structural dependence on excitation energy migration processes in artificial light harvesting cyclic zinc(II) porphyrin arrays.
人工光捕获环锌(II)卟啉阵列中激发能量迁移过程的结构依赖性。
- DOI:
10.1021/jp904729y - 发表时间:
2009-11-12 - 期刊:
- 影响因子:0
- 作者:
Min;Sung Cho;Pyosang Kim;Takaaki Hori;N. Aratani;A. Osuka;Dongho Kim - 通讯作者:
Dongho Kim
Numerical Analysis of Pressurized Air Flow and Acting Wave Pressure in the Wave Power Generation System Using the Low-Reflection Structure with Wall-Typed Curtain
壁式幕墙低反射结构波浪发电系统压缩空气流量和作用波压力的数值分析
- DOI:
10.9765/kscoe.2011.23.2.171 - 发表时间:
2011-04-29 - 期刊:
- 影响因子:0
- 作者:
K. Lee;Hyun;Chang;Do;Sung Cho - 通讯作者:
Sung Cho
Novel Conjugated Polymers Containing Ferrocene
新型含二茂铁共轭聚合物
- DOI:
10.1557/proc-598-bb3.43 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Jin;Sung Cho - 通讯作者:
Sung Cho
Sung Cho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sung Cho', 18)}}的其他基金
Collaborative Research: Integrated Swimming Microrobots for Intravascular Neuromodulation
合作研究:用于血管内神经调节的集成游泳微型机器人
- 批准号:
2325000 - 财政年份:2023
- 资助金额:
$ 31.02万 - 项目类别:
Standard Grant
NRI: 3-D Maneuverable Feedback-Controlled Micro Swimming Drone for Biomedical Applications
NRI:用于生物医学应用的 3D 可操纵反馈控制微型游泳无人机
- 批准号:
1637815 - 财政年份:2016
- 资助金额:
$ 31.02万 - 项目类别:
Standard Grant
Collaborative Research: Exploration of Near-Field Thermophotovoltaic Energy Conversion for Efficient Thermal Energy Recycling
合作研究:探索近场热光伏能量转换以实现高效热能回收
- 批准号:
1236052 - 财政年份:2012
- 资助金额:
$ 31.02万 - 项目类别:
Standard Grant
Microscale Swimming Medibot in Human Body Propelled by Oscillating Bubbles
由振荡气泡推动的微型人体游泳医疗机器人
- 批准号:
1029318 - 财政年份:2010
- 资助金额:
$ 31.02万 - 项目类别:
Standard Grant
EXP-SA: Collaborative Research: Ultratrace Detection of Explosives Enabled by an Integrated Microfluidic Nanosensing System
EXP-SA:合作研究:通过集成微流控纳米传感系统实现爆炸物的超痕量检测
- 批准号:
0730460 - 财政年份:2008
- 资助金额:
$ 31.02万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Microsystem for Ultrasensitive Airborne Pathogen Detection in Real Time
合作研究:实时超灵敏空气传播病原体检测的集成微系统
- 批准号:
0725525 - 财政年份:2007
- 资助金额:
$ 31.02万 - 项目类别:
Standard Grant
Micro Bubble Tweezers for Individual Cell Manipulation and In Vitro Ultrasound Cell Therapy
用于单个细胞操作和体外超声细胞治疗的微泡镊子
- 批准号:
0601470 - 财政年份:2006
- 资助金额:
$ 31.02万 - 项目类别:
Standard Grant
相似国自然基金
内蒙古中部中新世生物-磁性地层学研究及古环境重建
- 批准号:42374094
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
临潭盆地新近纪沉积对西秦岭地貌演化的约束:基于磁性地层与物源研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鄂尔多斯西南缘奥陶系磁性地层年代研究
- 批准号:42272034
- 批准年份:2022
- 资助金额:60 万元
- 项目类别:面上项目
青藏高原可可西里盆地始新世-渐新世气候转型事件磁性地层学研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:
祁连山西段山间盆地新生代沉积磁性地层学研究
- 批准号:42074077
- 批准年份:2020
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Magnetically-Controlled Modules with Reconfigurable Self-Assembly and Disassembly
合作研究:具有可重构自组装和拆卸功能的磁控模块
- 批准号:
2130775 - 财政年份:2022
- 资助金额:
$ 31.02万 - 项目类别:
Standard Grant
Collaborative Research: Magnetically-Controlled Modules with Reconfigurable Self-Assembly and Disassembly
合作研究:具有可重构自组装和拆卸功能的磁控模块
- 批准号:
2130793 - 财政年份:2022
- 资助金额:
$ 31.02万 - 项目类别:
Standard Grant
Collaborative Research: Magnetically Actuated Black Silicon Ratchet Surfaces for Digital Microfluidics
合作研究:用于数字微流体的磁驱动黑硅棘轮表面
- 批准号:
1950009 - 财政年份:2020
- 资助金额:
$ 31.02万 - 项目类别:
Standard Grant
Collaborative Research: Magnetically Assisted Self-Assembly for Facile 2D Membrane Protein Crystallization
合作研究:磁力辅助自组装轻松实现二维膜蛋白结晶
- 批准号:
2023833 - 财政年份:2019
- 资助金额:
$ 31.02万 - 项目类别:
Continuing Grant
WoU-MMA Collaborative research: Turbulence and Reconnection in Magnetically-Dominated Astrophysical Plasmas
WoU-MMA 合作研究:磁控天体物理等离子体中的湍流和重联
- 批准号:
1903412 - 财政年份:2019
- 资助金额:
$ 31.02万 - 项目类别:
Standard Grant