Collaborative Research: A Stacked Plasmonic Nanopore for Tether-Free Stretching and Label-Free Sensing of hSTf Dynamics and Complex Formation at Ultra-Low Concentrations

合作研究:堆叠式等离子体纳米孔,用于超低浓度下 hSTf 动力学和复杂形成的无绳拉伸和无标记传感

基本信息

  • 批准号:
    2022374
  • 负责人:
  • 金额:
    $ 28.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Fundamental knowledge of protein structures and their dynamic responses to stimuli or other molecules is important for many applications, including medical diagnosis and therapy. This research aims to develop a highly sensitive approach for studying the human serum transferrin protein (hSTf), which is a vital iron carrier in blood and of clinical importance. The sensing technique would allow differentiation of the free hSTf protein from the iron-bound protein and evaluation of iron deficiency or iron overload from very small blood samples. Successful development of this sensor would also enable profiling of a wide range of other proteins and biological molecules, e.g., DNA. This project offers excellent opportunities for interdisciplinary research training as it combines biochemistry, nanoengineering, photonics, and electrical engineering. The outreach efforts to K-12 schools through various programs at the Southern Methodist University and the University of Texas at Arlington help to inspire more students to pursue science, technology, engineering and mathematics (STEM) degrees.The stacked plasmonic nanosensor is based on the self-induced back-action (SIBA) actuated nanopore electrophoresis (SANE) sensing concept. The stacked nanopores are uniquely designed to enable 1) controlled trapping, releasing, and recapturing of proteins or the substrate-bound protein complexes, 2) transient deformation of the biological molecules, which can be induced by thermal effect or a combination of optical and electrical techniques, and 3) study of their deformation dynamics. The SANE concept implemented in the stacked nanopore sensor allows investigation of protein interactions at concentrations 1000-fold below the equilibrium dissociation constant in bulk solution, making this technique ultra-sensitive. An important aim of this research is the study of the properties of free-hSTf protein and the iron-bound protein complex using the SANE sensor. Optical signature profiles are established for each of the species to enable selective admission of bound complexes over unbound proteins in a mixed solution to the underlying pore. It uses symmetric (VCapture = VRecapture), followed by asymmetric (VCapture ≠ VRecapture) voltage conditions to facilitate the investigation of the strength and kinetic parameters associated with protein-substrate binding, protein relaxation times, and whether voltage-induced protein unfolding is reversible or not.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
蛋白质结构及其对刺激或其他分子的高度动态反应的基础知识对于许多应用都很重要,包括医学诊断和治疗。这项研究旨在开发一种敏感的方法来研究人血清转铁蛋白 (hSTf),这是至关重要的。该传感技术将能够区分游离 hSTf 蛋白和铁结合蛋白,并从非常小的血液样本中评估铁缺乏或铁过载。多种其他蛋白质该项目结合了生物化学、纳米工程、光子学和电气工程,通过南卫理公会大学和大学的各种项目向 K-12 学校进行推广工作。德克萨斯州阿灵顿分校帮助激励更多学生攻读科学、技术、工程和数学 (STEM) 学位。堆叠等离子体纳米传感器基于自感应反作用 (SIBA) 驱动纳米孔电泳 (SANE) 传感概念。堆叠纳米孔经过独特设计,可实现 1) 蛋白质或底物结合蛋白质复合物的受控捕获、释放和重新捕获,2) 热效应引起的生物分子瞬时变形。或光学和电学技术的组合,以及 3) 研究其变形动力学 在堆叠纳米孔传感器中实施的 SANE 概念允许研究浓度低于平衡解离 1000 倍的蛋白质相互作用。在散装溶液中恒定,使得该技术超灵敏,这项研究的一个重要目的是使用 SANE 传感器研究游离 hSTf 蛋白和铁结合蛋白复合物的特性。它使用对称(VCapture = VRecapture),然后是不对称(VCapture ≠ VRecapture)电压条件来促进强度的研究。以及与蛋白质-底物结合、蛋白质弛豫时间以及电压诱导的蛋白质展开是否可逆相关的动力学参数。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持标准。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanopore Data Analysis: Baseline Construction and Abrupt Change-Based Multilevel Fitting
纳米孔数据分析:基线构建和基于突变的多级拟合
  • DOI:
    10.1021/acs.analchem.1c01646
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Bandara, Y. M.;Saharia, Jugal;Karawdeniya, Buddini I.;Kluth, Patrick;Kim, Min Jun
  • 通讯作者:
    Kim, Min Jun
Label-free alternating-current plasmonic nanopore sensing of nanoparticles
纳米粒子的无标记交流等离子体纳米孔传感
  • DOI:
    10.1117/12.2607884
  • 发表时间:
    2022-03-03
  • 期刊:
  • 影响因子:
    14
  • 作者:
    Scott Renkes;Minjun Kim;G. Ale;rakis;rakis
  • 通讯作者:
    rakis
Use of a solid‐state nanopore for profiling the transferrin receptor protein and distinguishing between transferrin receptor and its ligand protein
使用固态纳米孔分析转铁蛋白受体蛋白并区分转铁蛋白受体及其配体蛋白
  • DOI:
    10.1002/elps.202200147
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    O'Donohue, Matthew;Saharia, Jugal;Bandara, Nuwan;Alexandrakis, Georgios;Kim, Min Jun
  • 通讯作者:
    Kim, Min Jun
Multi-physics simulations and experimental comparisons for the optical and electrical forces acting on a silica nanoparticle trapped by a double-nanohole plasmonic nanopore sensor
双纳米孔等离子体纳米孔传感器捕获的二氧化硅纳米颗粒上的光力和电力的多物理模拟和实验比较
  • DOI:
    10.1016/j.sbsr.2023.100581
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Asadzadeh, Homayoun;Renkes, Scott;Kim, MinJun;Alexandrakis, George
  • 通讯作者:
    Alexandrakis, George
Over One Million DNA and Protein Events Through Ultra‐Stable Chemically‐Tuned Solid‐State Nanopores
通过超稳定化学调谐固态纳米孔进行超过一百万个 DNA 和蛋白质事件
  • DOI:
    10.1002/smll.202300198
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    13.3
  • 作者:
    Saharia, Jugal;Bandara, Yapa Mudiyanselage Nuwan Dhananjaya Yapa;Karawdeniya, Buddini Iroshika;Dwyer, Jason Rodger;Kim, Min Jun
  • 通讯作者:
    Kim, Min Jun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MinJun Kim其他文献

Plasmonic nanopore sensing with continuous AC modulation
具有连续交流调制的等离激元纳米孔传感

MinJun Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MinJun Kim', 18)}}的其他基金

Collaborative Research: Magnetically-Controlled Modules with Reconfigurable Self-Assembly and Disassembly
合作研究:具有可重构自组装和拆卸功能的磁控模块
  • 批准号:
    2130775
  • 财政年份:
    2022
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Ultrasensitive Nucleic Acid Sensing Tools Based on Cas Assays and Solid-State Nanopores
合作研究:基于Cas检测和固态纳米孔的超灵敏核酸传感工具
  • 批准号:
    2041340
  • 财政年份:
    2021
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Standard Grant
NSF-BSF: Modeling and Control of Collective Dynamics for Externally Driven Planar Microswimmers
NSF-BSF:外部驱动平面微型游泳器集体动力学的建模和控制
  • 批准号:
    2123824
  • 财政年份:
    2021
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Controlled Investigation of Micro- and Nanoscale Contact Interactions Between Microbes and Biomaterials Using Artificial Bacteria
合作研究:使用人造细菌对微生物与生物材料之间的微米和纳米尺度接触相互作用进行受控研究
  • 批准号:
    1761060
  • 财政年份:
    2018
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an Integrated Bionanomaterials Characterization and Imaging System for Research and Education Initiatives in Bioengineering
MRI:获取集成生物纳米材料表征和成像系统,用于生物工程研究和教育计划
  • 批准号:
    1827831
  • 财政年份:
    2018
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantitative Analysis of Liposome Deformation at Nanoscale Using Resistive Pulse Sensing in Solid State Nanopores
合作研究:利用固态纳米孔中的电阻脉冲传感对纳米尺度脂质体变形进行定量分析
  • 批准号:
    1712069
  • 财政年份:
    2016
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Standard Grant
3D Motion and Swarm Control of Magnetically Propelled Microrobots for in vivo Particulate Drug Delivery
用于体内颗粒药物输送的磁力驱动微型机器人的 3D 运动和群体控制
  • 批准号:
    1712096
  • 财政年份:
    2016
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Micro-Assembly Exploiting SofT RObotics (MAESTRO)
RI:小型:协作研究:微装配开发软机器人 (MAESTRO)
  • 批准号:
    1712088
  • 财政年份:
    2016
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Continuing Grant
Integrated Nanochannel and Nanopore Architecture for Studying Translocation Dynamics of DNA
用于研究 DNA 易位动力学的集成纳米通道和纳米孔结构
  • 批准号:
    1707818
  • 财政年份:
    2016
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Standard Grant
3D Motion and Swarm Control of Magnetically Propelled Microrobots for in vivo Particulate Drug Delivery
用于体内颗粒药物输送的磁力驱动微型机器人的 3D 运动和群体控制
  • 批准号:
    1634726
  • 财政年份:
    2016
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Standard Grant

相似国自然基金

电动矿卡模块化堆叠式快充桩故障分层容错与应急通信关键技术研究
  • 批准号:
    52377201
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
三维堆叠芯片嵌入式自适应微通道流动沸腾特性及稳定调控机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于嵌入式3D堆叠闪存存储系统的可靠性关键技术研究
  • 批准号:
    61772092
  • 批准年份:
    2017
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目
3D堆叠式全并行事件驱动型视觉传感器研究
  • 批准号:
    61604107
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
应用于光伏发电的直接交流堆叠式优化系统与并网技术研究
  • 批准号:
    51307096
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: A Stacked Plasmonic Nanopore for Tether-Free Stretching and Label-Free Sensing of hSTf Dynamics and Complex Formation at Ultra-Low Concentrations
合作研究:堆叠式等离子体纳米孔,用于超低浓度下 hSTf 动力学和复杂形成的无绳拉伸和无标记传感
  • 批准号:
    2022398
  • 财政年份:
    2020
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Power-Efficient and Reliable 3D Stacked Reconfigurable Photonic Network-on-Chips for Scalable Multicore Architectures
SHF:小型:协作研究:用于可扩展多核架构的高效且可靠的 3D 堆叠可重构光子片上网络
  • 批准号:
    1547034
  • 财政年份:
    2015
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Power-Efficient and Reliable 3D Stacked Reconfigurable Photonic Network-on-Chips for Scalable Multicore Architectures
SHF:小型:协作研究:用于可扩展多核架构的高效且可靠的 3D 堆叠可重构光子片上网络
  • 批准号:
    1318997
  • 财政年份:
    2013
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Power-Efficient and Reliable 3D Stacked Reconfigurable Photonic Network-on-Chips for Scalable Multicore Architectures
SHF:小型:协作研究:用于可扩展多核架构的高效且可靠的 3D 堆叠可重构光子片上网络
  • 批准号:
    1318981
  • 财政年份:
    2013
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Standard Grant
CDI Type I:Collaborative Research: Cyber Enabled Investigation of Quantum Dots, Stacked Quantum Dots, and Quantum Posts
CDI I 型:协作研究:量子点、堆叠量子点和量子柱的网络研究
  • 批准号:
    1027817
  • 财政年份:
    2010
  • 资助金额:
    $ 28.73万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了