CAREER: Quantifying Multi-Scale Climate-Smart-Agriculture Management for Triple Wins in Food production, Climate Mitigation, and Environmental Sustainability
职业:量化多尺度气候智能农业管理,实现粮食生产、气候减缓和环境可持续性三赢
基本信息
- 批准号:2045235
- 负责人:
- 金额:$ 51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Mississippi River has the third-largest drainage basin and represents one of the most productive agricultural regions in the world, yielding 80% of US total corn and soybean production and 92% of the nation’s agricultural exports. Large-scale industrial agriculture has led to significant socio-economic gains, but at environmental costs (soil erosion, nutrient pollution, and aquatic acidification) in this region. Climate-smart agriculture (CSA) management practices have been proposed as solutions to these costs, as they not only increase crop yield, but also reduce greenhouse gas emissions, and sustain soil and water quality. However, the effectiveness of CSA practices varies under diverse climate and land use conditions and involves tightly coupled carbon, water, and nutrient cycles. These interactions have not been well studied, and this knowledge gap has hindered understanding and efficient application of CSA practices to achieve the benefits of enhancing food production, climate mitigation, and environmental sustainability. The overall goal of this project is to develop an integrated ecosystem monitoring, modeling, and machine learning framework (EcoM3) that incorporates field observations, satellite remote sensing data, process-based modeling, and a deep-learning approach to systematically investigate specific effects of CSA practice (no-tillage and cover crops) on key agroecosystem indicators (crop yield, soil carbon storage, greenhouse gases, and carbon/nitrogen leaching) at multiple scales. This project will use a long-term field site in Kentucky (continuous observations over 50 years) as one testing site to investigate CSA practice effects from daily to seasonal, annual, decadal scales; examine varied CSA effects at multiple sites with diverse climate and soil conditions across the Mississippi River basin; and predict the potential impacts of CSA practices at the entire river basin scale. Multi-scale data and model results will be integrated into the learning platform of the EcoM3 framework to communicate temporal and spatial CSA effectiveness with diverse stakeholders and policy-makers.This study addresses a challenging question: Will an enhanced systems approach advance our understanding of the interconnected relationships among agroecosystems, climate, and environment systems sufficiently to allow us to simultaneously manage multiple goals (food security, carbon sequestration, and environmental sustainability)? This study represents a systematic method to investigate the comprehensive effects of CSA practices in agricultural systems at both site and regional scales under heterogeneous climate and soil conditions. The proposed EcoM3 framework incorporates CSA management that is targeted to advance conceptual and operational understanding of interactions and feedback loops among climate, land use/management, and ecosystems. Products derived from this study will improve the mechanistic representation of the agroecosystem in Environmental System Models toward a more accurate prediction of biogeochemical cycles and future climate change and will provide viable recommendations for farmers and a scientific basis for making evidence-informed policy about building sustainable and climate-resilient agriculture. Research findings will be communicated with farmers through local extension meetings and the Multi-state Farmer Summit (representatives across regions in Mississippi River basin). Project products will enhance awareness about the importance of CSA management in building climate-resilient agroecosystems and preserving soil and water health. Multi-scale datasets will be made publicly available for research and education.This project is jointly funded by the CBET Environmental Sustainability program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
密西西比河是第三大排水盆地,代表了世界上生产力最高的农业地区之一,占美国玉米和大豆总产量的80%,占全国农业出口的92%。大规模的工业农业已导致了显着的社会经济增长,但以环境成本(土壤侵蚀,养分污染和水生酸化)。已经提出了气候智能农业(CSA)管理实践作为解决这些成本的解决方案,因为它们不仅增加了农作物的产量,而且还会减少温室气体排放,并维持土壤和水质。但是,在多样化的气候和土地使用条件下,CSA实践的有效性各不相同,涉及紧密耦合的碳,水和营养周期。这些相互作用并不是很好的研究,并且这些知识差距阻碍了CSA实践的理解和有效应用,以实现增强粮食生产,缓解气候和环境可持续性的好处。 The overall goal of this project is to develop an integrated ecosystem monitoring, modeling, and machine learning framework (EcoM3) that incorporates field observations, satellite remote sensing data, process-based modeling, and a deep-learning approach to systematically investigate specific effects of CSA practice (no-tillage and cover crops) on key agroecosystem indicators (crop yield, soil carbon storage, greenhouse gases, and carbon/nitrogen walking) at multiple秤。该项目将在肯塔基州使用长期的现场(在50年内连续观察)作为一个测试地点,以研究CSA实践的效果,从日常到季节性,年度衰老量表;在密西西比河盆地的多个地点检查多个地点的CSA效应;并预测CSA实践在整个河流量表上的潜在影响。 Multi-scale data and model results will be integrated into the learning platform of the EcoM3 framework to communicate temporary and spatial CSA effectiveness with divers stakeholders and policy-makers.This study addresses a challenge question: Will an enhanced systems approach advance our understanding of the interconnected relationships among agroecosystems, climate, and environment systems sufficiently to allow us to simply manage multiple goals (food security, carbon session, and environmental sustainability)?这项研究代表了一种系统的方法,可以研究在异质气候和土壤条件下,在现场和区域尺度上,CSA实践在农业系统中的全面影响。拟议的ECOM3框架结合了CSA管理,该管理旨在提高对气候,土地使用/管理和生态系统之间相互作用和反馈循环的概念和操作的理解。从这项研究中得出的产品将改善环境系统模型中农业生态系统的机理表示,以更准确地预测生物地球化学周期和未来的气候变化,并将为农民提供可行的建议,并为制定有关可持续和气候耐候农业的证据政策提供科学基础。研究发现将通过当地的推广会议和多州农民峰会(密西西比河河流域的代表)与农民进行交流。项目产品将提高人们对CSA管理在建设气候富度农业生态系统以及保护土壤和水健康方面的重要性的认识。多尺度数据集将公开用于研究和教育。本项目由CBET环境可持续性计划共同资助,既定的竞争研究(EPSCOR)的既定计划(EPSCOR)。该奖项反映了NSF的法定任务,并通过使用该基金会的智力功能和广泛影响来评估CRITERIA CRITERIA CRITERIA。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simulating no-tillage effects on crop yield and greenhouse gas emissions in Kentucky corn and soybean cropping systems: 1980–2018
- DOI:10.1016/j.agsy.2021.103355
- 发表时间:2022-03
- 期刊:
- 影响因子:6.6
- 作者:Yawen Huang;B. Tao;Yanjun Yang;Xiaochen Zhu;Xiaojuan Yang;J. Grove;W. Ren
- 通讯作者:Yawen Huang;B. Tao;Yanjun Yang;Xiaochen Zhu;Xiaojuan Yang;J. Grove;W. Ren
A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments
- DOI:10.1016/j.rser.2022.113042
- 发表时间:2023-02
- 期刊:
- 影响因子:15.9
- 作者:Yawen Huang;B. Tao;R. Lal;Klaus E. Lorenz;P. Jacinthe;R. Shrestha;Xiongxiong Bai;M. Singh;L. Lindsey;W. Ren
- 通讯作者:Yawen Huang;B. Tao;R. Lal;Klaus E. Lorenz;P. Jacinthe;R. Shrestha;Xiongxiong Bai;M. Singh;L. Lindsey;W. Ren
Conservation tillage increases corn and soybean water productivity across the Ohio River Basin
- DOI:10.1016/j.agwat.2021.106962
- 发表时间:2021-05-12
- 期刊:
- 影响因子:6.7
- 作者:Huang, Yawen;Tao, Bo;Ren, Wei
- 通讯作者:Ren, Wei
Instream sensor results suggest soil–plant processes produce three distinct seasonal patterns of nitrate concentrations in the Ohio River Basin
河内传感器结果表明,土壤植物过程在俄亥俄河流域产生了三种不同的硝酸盐浓度季节性模式
- DOI:10.1111/1752-1688.13107
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Gerlitz, Morgan;Fox, Jimmy;Ford, William;Husic, Admin;Mahoney, Tyler;Armstead, Mindy;Hendricks, Susan;Crain, Angela;Backus, Jason;Pollock, Erik
- 通讯作者:Pollock, Erik
Biochar as a negative emission technology: A synthesis of field research on greenhouse gas emissions
生物炭作为负排放技术:温室气体排放实地研究综合
- DOI:10.1002/jeq2.20475
- 发表时间:2023
- 期刊:
- 影响因子:2.4
- 作者:Shrestha, Raj K.;Jacinthe, Pierre‐Andre;Lal, Rattan;Lorenz, Klaus;Singh, Maninder P.;Demyan, Scott M.;Ren, Wei;Lindsey, Laura E.
- 通讯作者:Lindsey, Laura E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Ren其他文献
Modification of microstructure on PZT films for ultrahigh frequency transducer
超高频换能器PZT薄膜微观结构的改性
- DOI:
10.1016/j.ceramint.2015.03.202 - 发表时间:
2015 - 期刊:
- 影响因子:5.2
- 作者:
Chunlong Fei;Zeyu Chen;Wayne Ming Fong;Benpeng Zhu;Wang Lingyan;Wei Ren;Yongxiang Li;Jing Shi;K. Kirk Shung;Qifa Zhou - 通讯作者:
Qifa Zhou
A Watermark-Based In-Situ Access Control Model for Image Big Data
基于水印的图像大数据原位访问控制模型
- DOI:
10.3390/fi10080069 - 发表时间:
2018-07 - 期刊:
- 影响因子:3.4
- 作者:
Jinyi Guo;Wei Ren;Yi Ren;Tianqing Zhu - 通讯作者:
Tianqing Zhu
Colorimetric and fluorometric dual-readout protein kinase assay by tuning the active surface of nanoceria.
通过调节纳米陶瓷的活性表面进行比色和荧光双读数蛋白激酶测定。
- DOI:
10.1039/d1cc03357c - 发表时间:
2021-07 - 期刊:
- 影响因子:4.9
- 作者:
Sujuan Sun;Lijun Zhang;Xiaohui Lu;Wei Ren;Chenghui Liu - 通讯作者:
Chenghui Liu
A Simple Method to Grow Large-size CH3NH3PbBr3 Single Crystal and In Situ Characterization of the Photophysics Properties
生长大尺寸 CH3NH3PbBr3 单晶的简单方法及其光物理性质的原位表征
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:5.7
- 作者:
Lei Wang;Wei Ren;Liang Bian;Aimin Chang - 通讯作者:
Aimin Chang
Edge-Based Finite-Time Protocol Analysis With Final Consensus Value and Settling Time Estimations
基于边缘的有限时间协议分析,具有最终共识值和稳定时间估计
- DOI:
10.1109/tcyb.2018.2872806 - 发表时间:
2020-04 - 期刊:
- 影响因子:11.8
- 作者:
Yu Zhao;Yongfang Liu;Guanghui Wen;Wei Ren;Guanrong Chen - 通讯作者:
Guanrong Chen
Wei Ren的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Ren', 18)}}的其他基金
CAREER: Quantifying Multi-Scale Climate-Smart-Agriculture Management for Triple Wins in Food production, Climate Mitigation, and Environmental Sustainability
职业:量化多尺度气候智能农业管理,实现粮食生产、气候减缓和环境可持续性三赢
- 批准号:
2327138 - 财政年份:2022
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
- 批准号:
2326940 - 财政年份:2022
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Distributed Time-varying Coordination of Uncertain Nonlinear Multi-agent Systems: A Unified Model Reference Scheme
不确定非线性多智能体系统的分布式时变协调:统一模型参考方案
- 批准号:
2129949 - 财政年份:2022
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Distributed Joint Localization and Tracking for Multi-robot Networks Under Local Sensing and Communication Constraints with Theoretical Guarantees
具有理论保证的局部感知和通信约束下的多机器人网络分布式联合定位与跟踪
- 批准号:
2027139 - 财政年份:2020
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Distributed Multi-agent Continuous-time Optimization: Unbalanced Directed Graphs and Constrained Networked Games
分布式多智能体连续时间优化:不平衡有向图和约束网络博弈
- 批准号:
1920798 - 财政年份:2019
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
- 批准号:
1940696 - 财政年份:2019
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Distributed Continuous-time Optimization for Multi-agent Dynamical Systems under Realistic Challenges
现实挑战下多智能体动态系统的分布式连续时间优化
- 批准号:
1611423 - 财政年份:2016
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Robust Distributed Average Tracking for Networked Systems
网络系统的鲁棒分布式平均跟踪
- 批准号:
1537729 - 财政年份:2015
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Distributed Nonlinear Multi-agent Coordination in Asymmetric Switching Networks: A Sequential Comparison Framework
非对称交换网络中的分布式非线性多智能体协调:顺序比较框架
- 批准号:
1307678 - 财政年份:2013
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
CSR-EHCS(CPS), SM: Nature-inspired Control of Networked Cyber-physical Systems
CSR-EHCS(CPS),SM:网络信息物理系统的自然启发控制
- 批准号:
1221384 - 财政年份:2011
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
相似国自然基金
基于影像-基因-临床多尺度弥漫性大B细胞淋巴瘤复发及预后风险精准量化评估研究
- 批准号:82372025
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
复合场景下基于多模态融合的轻量化任务处理与模型泛化研究
- 批准号:62372111
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于多模态学习的焊接动态熔池“形-质”量化预测与视觉表征
- 批准号:52305375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型轻量化混合模块化多电平变换器拓扑与控制策略研究
- 批准号:52307212
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
新型轻量化混合模块化多电平变换器拓扑与控制策略研究
- 批准号:
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:
相似海外基金
MULTI-STRESS: Quantifying the impacts of multiple stressors in multiple dimensions to improve ecological forecasting
多重压力:在多个维度量化多种压力源的影响,以改进生态预测
- 批准号:
NE/Z000130/1 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Research Grant
抗うつ薬の遺伝子多型情報を基盤とする用量個別化設定を目指した薬理ゲノム学研究
基于遗传多态性信息的抗抑郁药物个体化剂量设定的药物基因组学研究
- 批准号:
24K10747 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
細胞膜変形分子マシンの動作メカニズム:多量体形成と構造変化による膜変形の理論研究
细胞膜变形分子机器的运行机制:多聚体形成和结构变化引起的膜变形的理论研究
- 批准号:
23K23858 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
孤立戦略に基づく量子風進化アルゴリズムの多数目的最適化への展開
基于隔离策略的量子风演化算法在多目标优化中的部署
- 批准号:
24K15112 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
新奇量子系実現のための多元化合物ヘテロ界面の結晶成長
多组分化合物异质界面的晶体生长以实现新型量子系统
- 批准号:
24K08275 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)