Braids, Surfaces, and Polynomials

辫子、曲面和多项式

基本信息

  • 批准号:
    2203431
  • 负责人:
  • 金额:
    $ 39.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

Polynomials arise in mathematics and science whenever we model a physical, biological, or chemical system. Surfaces often appear when we study the geometry of a system; for instance, the set of configurations of a mechanical system or the underlying template for a large dimensional data set. Braids occur whenever we have a collection of points moving in a surface, for instance stars and planets moving within our field of vision, or the roots of polynomials changing with respect to a parameter. In order to understand these phenomena, it is essential to study the set of symmetries of a surface, which is also known as the mapping class group of the surface. This is a beautiful and rich theory that has been the focus of intense study over the past century. The goal of this research is to study surfaces, braids, and polynomials, and the interactions of these objects with each other. One project is to give fast algorithms for deciding basic properties of elements of the mapping class group. One of the properties that the algorithm computes is the entropy, which determines the amount of mixing happening on the surface. In addition to these research goals, the PI plans to continue work on several projects that have direct impact on graduate, undergraduate, and high school students. The first is the highly successful Topology Students Workshop, a conference that serves both as a research conference in topology for graduate students as well as a professional development workshop. The second is a free, online, interactive textbook for basic linear algebra, called Interactive Linear Algebra. The PI also plans to expand outreach activities to local K-12 classrooms.The PI will study Thurston maps, braid groups, and mapping class groups. A Thurston map is a branched cover of the complex plane (or Riemann sphere) over itself, with finite post-critical set. Many polynomials are Thurston maps. A basic recognition problem in complex dynamics is: given a Thurston map, is it equivalent to a polynomial, and if so, which one? In prior work, the PI and his collaborators gave a new, geometric algorithm to solve this recognition problem. The PI plans to investigate new, structural descriptions of the universe of such recognition problems. Specifically, the project will establish a version of the Bestvina-Handel algorithm from the theory of mapping class groups that is adapted to the setting of Thurston maps. The project will also provide a version of the Birman exact sequence (again from the theory of mapping class groups). One project in the theory of mapping class groups is to give a quadratic time algorithm that takes as input a product of generators of the mapping class group and determines the Nielsen-Thurston type of that product. This algorithm also produces finer information about the product of generators, such as reducing curves and entropy. A third project is to classify homomorphisms between braid groups. The main new tool is the theory of totally symmetric sets, developed by the PI and his collaborators. By classifying these homomorphisms we gain insight into the relationships between polynomials of different degrees.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
每当我们对物理、生物或化学系统进行建模时,数学和科学中就会出现多项式。当我们研究系统的几何形状时,曲面经常出现;例如,机械系统的配置集或大维数据集的基础模板。每当我们有一组在表面上移动的点时,例如恒星和行星在我们的视野内移动,或者多项式的根相对于参数发生变化,就会出现辫子。为了理解这些现象,有必要研究曲面的对称性集合,也称为曲面的映射类群。这是一个美丽而丰富的理论,在过去的一个世纪里一直是人们深入研究的焦点。这项研究的目标是研究曲面、辫子和多项式,以及这些对象之间的相互作用。一个项目是提供快速算法来确定映射类组元素的基本属性。该算法计算的属性之一是熵,它决定了表面上发生的混合量。除了这些研究目标之外,PI 还计划继续开展几个对研究生、本科生和高中生有直接影响的项目。第一个是非常成功的拓扑学学生研讨会,该会议既是研究生拓扑学研究会议,也是专业发展研讨会。第二本是免费的在线交互式基础线性代数教科书,称为交互式线性代数。 PI 还计划将外展活动扩展到当地 K-12 教室。PI 将研究瑟斯顿地图、辫子组和绘图班级组。瑟斯顿映射是复平面(或黎曼球面)自身的分支覆盖,具有有限的后临界集。许多多项式都是瑟斯顿映射。复杂动力学中的一个基本识别问题是:给定瑟斯顿图,它是否等价于多项式,如果是,那么是哪一个?在之前的工作中,PI 和他的合作者给出了一种新的几何算法来解决这个识别问题。 PI 计划研究此类识别问题的新的结构描述。具体来说,该项目将从映射类群理论中建立一个适合瑟斯顿映射设置的Bestvina-Handel算法版本。该项目还将提供伯曼精确序列的版本(同样来自映射类组的理论)。映射类群理论中的一个项目是给出一种二次时间算法,该算法将映射类群的生成器的乘积作为输入并确定该乘积的 Nielsen-Thurston 类型。该算法还产生有关生成器乘积的更精细信息,例如减少曲线和熵。第三个项目是对辫子组之间的同态进行分类。主要的新工具是完全对称集理论,由 PI 及其合作者开发。通过对这些同态进行分类,我们可以深入了解不同次数的多项式之间的关系。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mixing Surfaces, Algebra, and Geometry
混合曲面、代数和几何
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dan Margalit其他文献

Erratum to The level four braid group (J. reine angew. Math. 735 (2018), 249–264)
四级辫子组勘误表(J. reine angew. Math. 735 (2018), 249–264)
Thurston's theorem and the Nielsen-Thurston classification via Teichm\"uller's theorem
瑟斯顿定理和基于 Teichm"uller 定理的 Nielsen-Thurston 分类
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James Belk;Dan Margalit;Rebecca R. Winarski
  • 通讯作者:
    Rebecca R. Winarski

Dan Margalit的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dan Margalit', 18)}}的其他基金

Conference: Topology Students Workshop 2024
会议:拓扑学学生研讨会 2024
  • 批准号:
    2350113
  • 财政年份:
    2024
  • 资助金额:
    $ 39.6万
  • 项目类别:
    Standard Grant
Topology Students Workshop
拓扑学学生研讨会
  • 批准号:
    2422651
  • 财政年份:
    2024
  • 资助金额:
    $ 39.6万
  • 项目类别:
    Standard Grant
Braids, Surfaces, and Polynomials
辫子、曲面和多项式
  • 批准号:
    2417920
  • 财政年份:
    2023
  • 资助金额:
    $ 39.6万
  • 项目类别:
    Standard Grant
Topology Students Workshop
拓扑学学生研讨会
  • 批准号:
    2011100
  • 财政年份:
    2020
  • 资助金额:
    $ 39.6万
  • 项目类别:
    Standard Grant
Topology Student Workshop
拓扑学学生研讨会
  • 批准号:
    1822040
  • 财政年份:
    2018
  • 资助金额:
    $ 39.6万
  • 项目类别:
    Standard Grant
Mapping Class Groups and Polynomials
映射类组和多项式
  • 批准号:
    1811941
  • 财政年份:
    2018
  • 资助金额:
    $ 39.6万
  • 项目类别:
    Standard Grant
Conference: No Boundaries: Groups in Algebra, Geometry, and Topology
会议:无边界:代数、几何和拓扑中的群
  • 批准号:
    1748107
  • 财政年份:
    2017
  • 资助金额:
    $ 39.6万
  • 项目类别:
    Standard Grant
Group Theoretical, Combinatorial, and Dynamical Aspects of Mapping Class Groups
映射类组的群理论、组合和动力学方面
  • 批准号:
    1510556
  • 财政年份:
    2015
  • 资助金额:
    $ 39.6万
  • 项目类别:
    Standard Grant
Tech Topology Conference III
技术拓扑会议III
  • 批准号:
    1550308
  • 财政年份:
    2015
  • 资助金额:
    $ 39.6万
  • 项目类别:
    Continuing Grant
Tech Topology Conference
技术拓扑会议
  • 批准号:
    1158834
  • 财政年份:
    2011
  • 资助金额:
    $ 39.6万
  • 项目类别:
    Standard Grant

相似国自然基金

锶银离子缓释钛表面通过线粒体自噬调控NLRP3炎症小体活化水平促进骨整合的机制研究
  • 批准号:
    82301139
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
氢离子电池负极材料的表面结构诱导去溶剂化机制
  • 批准号:
    52362030
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于表面等离激元纳腔/CRISPR-Cas12a异质结荧光增强效应的生物传感研究
  • 批准号:
    62305229
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
弓形虫感染对蜕膜NK细胞表面Lag-3的影响及进而导致其母胎耐受功能紊乱的分子机制研究
  • 批准号:
    32302903
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于荧光薄膜的微纳集成器件表面温度场高温敏实时成像
  • 批准号:
    62375255
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

表面ナノ加工により生体接着能を付与した創面被覆用マイクロニードルシート
通过表面纳米加工,具有生物粘附能力的伤口表面涂层用微针片
  • 批准号:
    24K15759
  • 财政年份:
    2024
  • 资助金额:
    $ 39.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding Material Interactions and Effects on Polymicrobial Communities at Surfaces
了解材料相互作用和对表面多种微生物群落的影响
  • 批准号:
    BB/Y512412/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.6万
  • 项目类别:
    Training Grant
Collaborative Research: Sloshing liquid decontamination of compliant surfaces
合作研究:顺应表面的晃动液体净化
  • 批准号:
    2346686
  • 财政年份:
    2024
  • 资助金额:
    $ 39.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Sloshing liquid decontamination of compliant surfaces
合作研究:顺应表面的晃动液体净化
  • 批准号:
    2346687
  • 财政年份:
    2024
  • 资助金额:
    $ 39.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Trisections Workshops: Connections with Knotted Surfaces and Diffeomorphisms
协作研究:会议:三等分研讨会:与结曲面和微分同胚的联系
  • 批准号:
    2350344
  • 财政年份:
    2024
  • 资助金额:
    $ 39.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了