Collaborative Research: Enhanced electricity generation through liquid flow over durable slippery Surfaces
合作研究:通过液体在耐用的光滑表面上流动来增强发电
基本信息
- 批准号:2202688
- 负责人:
- 金额:$ 26.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Efficient hydropower technologies support national prosperity and energy security by providing a renewable energy source and reducing greenhouse gas emissions. Traditional hydropower technologies convert the kinetic energy of falling water to electricity using dams and bulky electromagnetic generators. Although hydropower is a renewable energy source, traditional approaches often come with adverse environmental impacts and poor power efficiency. Notably, electricity can also be generated when liquid flows over a surface, and the resulting electricity can be harvested without using dams or electromagnetic generators. Generating hydropower via liquid flow over a surface is a versatile approach that would enable the harvesting of energy stored in various forms across the global water cycle (e.g., water flow, natural evaporation, raindrops, and ocean waves). However, such energy generation approaches do not yet yield the desired voltage output. To increase the generated electricity when liquid flows over a surface, this project will examine the impact of the liquid-surface interfacial properties on performance; favorable properties include significant interface charges, small liquid moving friction, and being durable under flow. The generated knowledge related to liquid flow over novel engineered interfaces will transform key technologies in the sustainable generation of energy, clean water, and the design of biomedical devices. The investigators will conduct educational activities that focus on the professional development and participation of women in STEM, especially K-12 and undergraduate students, to train a diverse future engineering workforce.The overarching objective of this proposal is to discover new fundamentals of electrokinetics over engineered interfaces; this knowledge will be used to design a novel, durable slippery surface for improved electricity generation. Superhydrophobic surfaces are traditionally used to enhance energy conversion in electrokinetic flow by reducing interface friction. However, there are two significant challenges associated with using superhydrophobic surfaces for this purpose: the reduced interface charges due to non-charged liquid-air interfaces and the inferior durability of liquid-air interfaces under fluid flow. To address these challenges and achieve the overarching objective, an integrated experimental and computational approach will be employed to generate the necessary knowledge. Task 1 entails the experimental characterization of the streaming potential of electrokinetic flow over oil-filled slippery rough surfaces. This effort will lead to an understanding of the effects of liquid-oil interfaces and surface roughness on enhancing interface charges. Task 2 entails experimental characterization and direct numerical simulation of the liquid-oil interface stability and durability in flow under different oil properties and geometrical parameters of the surface texture. The influences of these control parameters on surface durability will be revealed. The insights gained through Tasks 1 and 2 will then be applied to design a durable slippery surface that will increase voltage generation by two orders of magnitude over that of using a solid or superhydrophobic surface. The novel durable slippery surface will transform the development of electrokinetic energy devices for myriad applications, ranging from small-scale in situ power sources for smart electronics to scaled-up energy systems for blue energy harvesting.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
有效的水电技术通过提供可再生能源并减少温室气体排放来支持国家繁荣和能源安全。传统的水电技术使用大坝和笨重的电磁发生器将降水的动能转化为电能。尽管水力发电是可再生能源,但传统方法通常会带来不利的环境影响和功率较差。值得注意的是,当液体流过表面时,也可以产生电力,并且可以在不使用大坝或电磁发电机的情况下收获产生的电力。通过液体流在表面上产生水力发电是一种多功能方法,它可以使整个全球水循环(例如水流,自然蒸发,雨滴和海浪)的各种形式的能量收获。但是,这种能量产生的方法尚未产生所需的电压输出。为了增加液体在表面上流动时产生的电力,该项目将检查液态表面界面特性对性能的影响。有利的特性包括明显的界面电荷,小液体移动摩擦以及在流动下耐用。与新型工程界面上的液体流有关的产生的知识将改变可持续产生的能源,清水和生物医学设备设计的关键技术。调查人员将开展教育活动,重点介绍妇女在STEM中的专业发展和参与,尤其是K-12和本科生,以培训多样化的未来工程劳动力。该建议的总体目标是发现电动学的新基本面而不是工程界面;这些知识将用于设计一种新颖,耐用的滑动表面,以改善发电。传统上,超疏水表面用于通过减少界面摩擦来增强电动流动的能量转化。但是,为此目的使用超疏水表面有两个重大挑战:由于非电荷液体空气接口和流体流动下液体空气接口的较低耐用性,界面电荷减少。为了应对这些挑战并实现总体目标,将采用综合的实验和计算方法来产生必要的知识。任务1需要在油填充的湿滑粗糙表面上电动流的流势的实验表征。这项工作将导致对液体界面和表面粗糙度对增强界面电荷的影响的理解。任务2需要在不同的油性质和表面纹理的几何特性和几何参数下进行液体油界面稳定性和流量持久性的实验表征和直接数值模拟。这些控制参数对表面耐用性的影响将被揭示。然后,通过任务1和2获得的见解将应用于设计耐用的湿滑表面,该表面将使使用固体或超疏水表面的电压产生两个数量级。新颖的耐用滑水表面将改变用于无数应用的电动能量设备的开发,从小规模的现场电源到智能电子设备的原位电源到扩展蓝色能源收获的能源系统。这奖反映了NSF的法定任务,并且认为通过基金会的知识优点和广泛的crietia crietia crietia criperia criperia criperia criperia criperia criperia criperia criperia criperia criperia均值得一提。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Bei Fan其他文献
Comparative study on the foam and air-water interface properties of ethanol-soluble and non-ethanol components in wheat aqueous phase protein
小麦水相蛋白中乙醇溶性和非乙醇组分泡沫及气-水界面特性的对比研究
- DOI:10.1016/j.foodhyd.2023.10970010.1016/j.foodhyd.2023.109700
- 发表时间:20232023
- 期刊:
- 影响因子:10.7
- 作者:Muyuan Zhao;Liya Liu;Ge Wang;Muhammad Awais;Litao Tong;Bei Fan;Aijun Hu;Fengzhong WangMuyuan Zhao;Liya Liu;Ge Wang;Muhammad Awais;Litao Tong;Bei Fan;Aijun Hu;Fengzhong Wang
- 通讯作者:Fengzhong WangFengzhong Wang
Wobbling and Migrating Ferrofluid Droplets
摆动和迁移的铁磁流体液滴
- DOI:
- 发表时间:20242024
- 期刊:
- 影响因子:0
- 作者:A. Aggarwal;Shih;E. Kirkinis;Mohammed Imran Khan;Bei Fan;Michelle Driscoll;Monica Olvera de la CruzA. Aggarwal;Shih;E. Kirkinis;Mohammed Imran Khan;Bei Fan;Michelle Driscoll;Monica Olvera de la Cruz
- 通讯作者:Monica Olvera de la CruzMonica Olvera de la Cruz
Untargeted mass spectrometry-based metabolomics approach unveils molecular changes in heat-damaged and normal soybean
基于非靶向质谱的代谢组学方法揭示了热损伤和正常大豆的分子变化
- DOI:
- 发表时间:20222022
- 期刊:
- 影响因子:0
- 作者:Dong Zhu;Dongyan Guan;Bei Fan;Yufeng Sun;Fengzhong WangDong Zhu;Dongyan Guan;Bei Fan;Yufeng Sun;Fengzhong Wang
- 通讯作者:Fengzhong WangFengzhong Wang
Okara protein extracted by alternating ultrasonic/alkali treatment and its improved physicochemical and functional properties
- DOI:10.1016/j.ultsonch.2024.10712910.1016/j.ultsonch.2024.107129
- 发表时间:2024-12-012024-12-01
- 期刊:
- 影响因子:
- 作者:Lu Tang;Xiaolin Liu;Shiru Bai;Dan Zhao;Xuzhen Guo;Dandan Zhu;Guiying Su;Bei Fan;Bo Wang;Liang Zhang;Fengzhong WangLu Tang;Xiaolin Liu;Shiru Bai;Dan Zhao;Xuzhen Guo;Dandan Zhu;Guiying Su;Bei Fan;Bo Wang;Liang Zhang;Fengzhong Wang
- 通讯作者:Fengzhong WangFengzhong Wang
TNN is first linked to auditory neuropathy.
TNN 首先与听神经病有关。
- DOI:10.1016/j.bbrc.2022.09.08110.1016/j.bbrc.2022.09.081
- 发表时间:20222022
- 期刊:
- 影响因子:3.1
- 作者:Fei Lu;Pengfei Liang;Bei Fan;Qingwen Zhu;T. Xue;Zhenzhen Liu;Ren;Yukai Zhang;Xinyu Zhang;Wei Li;Shu;Jun Chen;D. ZhaFei Lu;Pengfei Liang;Bei Fan;Qingwen Zhu;T. Xue;Zhenzhen Liu;Ren;Yukai Zhang;Xinyu Zhang;Wei Li;Shu;Jun Chen;D. Zha
- 通讯作者:D. ZhaD. Zha
共 17 条
- 1
- 2
- 3
- 4
Bei Fan的其他基金
MRI: Track 1 Acquisition of a Deep Reactive Ion Etching System for Enhanced Semiconductor Processing Capability
MRI:轨道 1 采购深度反应离子蚀刻系统以增强半导体加工能力
- 批准号:23204762320476
- 财政年份:2023
- 资助金额:$ 26.33万$ 26.33万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
智能建造“人机协作”场景下高龄建筑工人胜任力的影响机理与增强方法研究
- 批准号:72301131
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人类与AI协作模式下的应急救援人员脑认知机制与认知增强研究
- 批准号:72374088
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
基于驾驶人认知决策迁移的人机协作混合增强智能控制策略研究
- 批准号:52102451
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于驾驶人认知决策迁移的人机协作混合增强智能控制策略研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于双手协作运动机理的仿人外肢体设计与协同控制研究
- 批准号:51905375
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
- 批准号:23239842323984
- 财政年份:2024
- 资助金额:$ 26.33万$ 26.33万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
- 批准号:23239832323983
- 财政年份:2024
- 资助金额:$ 26.33万$ 26.33万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
- 批准号:22322982232298
- 财政年份:2023
- 资助金额:$ 26.33万$ 26.33万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
- 批准号:24163752416375
- 财政年份:2023
- 资助金额:$ 26.33万$ 26.33万
- 项目类别:Continuing GrantContinuing Grant
Collaborative Research: URoL:ASC: Microbiome-mediated plant genetic resistance for enhanced agricultural sustainability
合作研究:URoL:ASC:微生物介导的植物遗传抗性以增强农业可持续性
- 批准号:23195682319568
- 财政年份:2023
- 资助金额:$ 26.33万$ 26.33万
- 项目类别:Standard GrantStandard Grant