Variational Problems and Dynamics in Spaces of Large Dimensions
大维空间中的变分问题和动力学
基本信息
- 批准号:2154578
- 负责人:
- 金额:$ 31.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project investigates a broad array of challenging problems. One of them is on the theory of optimal transport, which dates back to Gaspard Monge in 1781. The theory studies, for instance, the optimal way to move a pile of sand to an excavation, where optimality is measured against a cost function which may be proportional to the distance traveled. Many works led to connections with partial differential equations, fluid mechanics, geometry, probability theory and functional analysis. Currently, optimal transport enjoys applications in signal and image representation, inverse problems, cancer detection, shape and image registration, and machine learning, to name a few. The project relies on the theory of optimal transport to make advances in games which consist of a large number of players, and keeps a focus on equations such as the so-called master equation pioneered by Lasry and Lions. It also features variational problems and dynamics of systems of finitely many and infinitely many particles and also deals with non-commutative optimal transport theory. The project offers training opportunities for undergraduate students, graduate students, and postdoctoral researchers, as well as learning seminars. The students are involved in a research program that aims to encourage interactions between mathematicians, computer scientists, and engineers. The project studies Hamilton-Jacobi equations with non-local terms, known to be challenging, especially when the non-locality appears in the gradient of the unknown function. In this context, the so-called Lasry-Lions monotonicity condition allowed to obtain the first well-posedness result on the master equation. In a previous research project, an alternative condition was proposed, which made it possible for the first time to handle non-separable Hamiltonians. This prior work relied heavily on the presence of the so-called individual noise. This project explores new ideas for handling non-separable Hamiltonians with only common noise in the master equations. It also initiates studies on inverse optimal transport and inverse Mean Field Games problems, with the goal of achieving desired outcomes by designing appropriate Lagrangians. Working on bounded domains makes it more difficult to predict the Lagrangians needed to produce desirable Nash equilibria in Mean Field Games. The project identifies minimal information on the boundary needed to deal with non-smooth augmented Lagrangians which appear in the resolution of these inverse problems. The project also considers inverse optimal transport problems in unbounded sets. Another part of this project is on partial differential equations on graphs and relies on a metric manifold of discrete densities. The project develops a well-posedness theory as well as a stability property for differential equations on graphs. While the role of optimal transport is well established in classical mechanics, establishing these ideas in the quantum setting, opens doors to several new avenues of research. For instance, one faces the challenge of identifying the non-commutative common noise operator, and studying its properties. To achieve these goals, there is a need to continue unearthing new properties of the Biane-Voiculescu's transport distance, and study non-commutative dynamical systems. Non-commutative optimal transport theory offers the appropriate setting for studying dynamics of random matrices, whose sizes will later tend to infinity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目调查了许多具有挑战性的问题。其中之一是最佳运输理论,该理论可以追溯到1781年的加斯帕德·蒙格(Gaspard Monge)。许多作品导致与部分微分方程,流体力学,几何学,概率理论和功能分析的联系。当前,最佳运输享受信号和图像表示,反问题,癌症检测,形状和图像注册以及机器学习的应用。该项目依赖于最佳运输理论来在由大量玩家组成的游戏中取得进步,并将重点放在诸如Lasry和Lions开创的所谓的主方程之类的方程式上。它还具有有限的许多粒子和无限多个颗粒的系统的变异问题和动力学,并且还涉及非共同的最佳运输理论。该项目为本科生,研究生和博士后研究人员以及学习研讨会提供了培训机会。这些学生参与了一项研究计划,旨在鼓励数学家,计算机科学家和工程师之间的互动。该项目研究了具有非本地术语的汉密尔顿 - 雅各比方程,已知是具有挑战性的,尤其是当非本地性出现在未知函数的梯度中时。在这种情况下,所谓的Lasry-Lions单调性条件允许在主方程中获得第一个良好的良好性结果。在先前的研究项目中,提出了另一种条件,这使得第一次有可能处理不可分离的哈密顿人。这项先前的工作在很大程度上取决于所谓的个人噪声的存在。该项目探索了处理不可分割的哈密顿人在主方程中仅具有共同噪音的新想法。它还启动了对逆最佳运输和平均野外游戏问题的研究,目的是通过设计适当的Lagrangians来实现所需的结果。在有限的领域上工作使得更难预测平均野外游戏中产生理想的纳什均衡所需的拉格朗日人。该项目确定了有关处理这些反问题所需的非平滑增强Lagrangians所需的边界的最小信息。该项目还考虑了无限制集合中的最佳最佳运输问题。该项目的另一部分是在图形上的部分微分方程上,并依赖于离散密度的度量。该项目开发了一个适合的理论以及图形上微分方程的稳定性。虽然在古典力学中已经建立了最佳运输的作用,并在量子环境中建立了这些思想,但为几种新的研究途径打开了大门。例如,人们面临识别非交通性的公共噪声操作员并研究其特性的挑战。为了实现这些目标,有必要继续发掘Biane-Voiculescu的运输距离的新特性,并研究非共同的动力学系统。非共同的最佳运输理论为研究随机矩阵的动态提供了适当的设置,其大小后来将倾向于无限。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点和更广泛影响的评估审查标准来通过评估来支持的。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Well-posedness and regularity for a polyconvex energy
多凸能量的适定性和规律性
- DOI:10.1051/cocv/2023041
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Gangbo, Wilfrid;Jacobs, Matt;Kim, Inwon
- 通讯作者:Kim, Inwon
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wilfrid Gangbo其他文献
Wilfrid Gangbo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wilfrid Gangbo', 18)}}的其他基金
Infinite dimensional variational problems and their dynamics
无限维变分问题及其动力学
- 批准号:
1700202 - 财政年份:2017
- 资助金额:
$ 31.55万 - 项目类别:
Continuing Grant
2007 International Conference in Ouidah
2007 年维达国际会议
- 批准号:
0726688 - 财政年份:2007
- 资助金额:
$ 31.55万 - 项目类别:
Standard Grant
Geometry on the Set of Probability Measures
概率测度集的几何
- 批准号:
0600791 - 财政年份:2006
- 资助金额:
$ 31.55万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Applications of Transportation Theory to Nonlinear Dynamics
FRG:合作研究:运输理论在非线性动力学中的应用
- 批准号:
0354729 - 财政年份:2004
- 资助金额:
$ 31.55万 - 项目类别:
Standard Grant
The Monge-Kantorovich in Kinetic Theory
运动理论中的蒙日-康托罗维奇
- 批准号:
0200267 - 财政年份:2002
- 资助金额:
$ 31.55万 - 项目类别:
Continuing Grant
Collaborative Research: Optimal Transportation: Its Geometry and Applications
合作研究:最优交通:其几何结构和应用
- 批准号:
0074037 - 财政年份:2000
- 资助金额:
$ 31.55万 - 项目类别:
Standard Grant
Applications of Monge-Kantorovich Theory and Michell Trusses
Monge-Kantorovich理论和米歇尔桁架的应用
- 批准号:
9970520 - 财政年份:1999
- 资助金额:
$ 31.55万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Monge Problem and the Calculus of Variations
数学科学:蒙日问题和变分法
- 批准号:
9622734 - 财政年份:1996
- 资助金额:
$ 31.55万 - 项目类别:
Standard Grant
相似国自然基金
非线性波方程外区域初边值问题的长时间动力学性质研究
- 批准号:12371239
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
双曲型液晶弹性体动力学方程的分析和渐近问题
- 批准号:12371224
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
动力学嵌入问题与sofic平均维数
- 批准号:12371190
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
非线性双相与磁场问题解的动力学性态研究与分析
- 批准号:12301219
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
波动传热热力耦合问题的近场动力学研究
- 批准号:12372209
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Variational Problems, Stability and Dynamics
变分问题、稳定性和动力学
- 批准号:
1764254 - 财政年份:2018
- 资助金额:
$ 31.55万 - 项目类别:
Continuing Grant
Infinite dimensional variational problems and their dynamics
无限维变分问题及其动力学
- 批准号:
1700202 - 财政年份:2017
- 资助金额:
$ 31.55万 - 项目类别:
Continuing Grant
A variational approach to the modeling and analysis of droplet and bubble motions
液滴和气泡运动建模和分析的变分方法
- 批准号:
25800087 - 财政年份:2013
- 资助金额:
$ 31.55万 - 项目类别:
Grant-in-Aid for Young Scientists (B)